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ABSTRACT

This thesis involved a numerical experiment to compare a deterministic
Generalized Lanchester Equation model, referred to as the M/W model, and a
stochastic computer simulation model, referred to as the C/S model. A discussion of
the historical background of Lanchester’s equations precedes the presentation of the
two models and the experimental design. The results are presented graphically and
show that the MW force level trajectory is a good approximation for the C;S force
level trajectory. It was also shown that the two model's trajectories behaved similarly.
These results indicate that deterministic attrition models may often be good
approximations for the mean of stochastic; attrition models. Command and control
applications of a model like the M/W model, are presented and a list of suggested
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made,
within the time available, to ensure that the programs are free of computational and
logic errors, they cannot be considered validated. Any application of these programs
without additional verification is at the risk of the user. '
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I. INTRODUCTION

A. PURPOSE AND OVERVIEW

The main purpose of this thesis is to conduct an experiment, using two different
types of combat attrition models, to determine whether their results are similar. There
is a belief that deterministic Lanchester Equation type models closely parallel the mean
results of stochastic computer simulations. This research will attempt to determine
whether the results of a deterministic “Generalized Lanchester Equation” type model
and a stochastic computer simulation model are similar. This work is the first such
research of this type published to the author’s knowledge.

Chapter One provides the reader with an introduction to modeling and an
overview of the history of Lanchester Equation type models. The purpose of Chapter
Two is to introduce the two models which are utilized in this experiment and Chapter
Three is a presentation of the experimental design. The results of the experiment are
provided in Chapter Four and a discussion of the conclusions and recommended
follow-up research are given in Chapter Five.

B. MODELING

Throughout history, military analysts have been developing and utilizing various
types of models for detailed analysis to assist in decision making. A model is defined
as a “simplified representation of the entity it imitates or simulates” [Ref. 1: p. 1]. A
second definition of a model used by the U.S. Army Models Review Committee, “an
abstract representation of reality which is used for the purpose of prediction and to
develop understanding about the real-world processes” [Ref. 2: p. 5], implies that
models are designed to be close representations of a real-world entity or process. A
final definition for a military model is, “an abstraction of reality, the elements of which
are chosen for (a) an investigative purpose or (b) a resource management purpose; in
other words, an abstraction to assist in making decisions.” [Ref. 1: p. 3]. From these
definitions, it can be seen how important the development and use of models is to the
military analyst.

In general, there are three types of models:

1)  Iconic model
2)  Analogue model
3)  Symbolic model

12
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An iconic model is a miniature version of the entity, such as an airplane or a tank

model. An analogue model is an artificial representation of reality. An example of an
analogue model is a map which represents the three dimensional real-world on a two
dimensional, small scale sheet of paper. A symbolic model is one in which words or
numerical descriptions are used to represent an entity or process. An example of a
symbolic model is a mathematical equation which represents a process such as
attrition.

The tyvpes of models used by military analysts cover the entire spectrum from
military field exercises (which can be thought of as iconic models) to analytical models.
Figure 1.1 is a combination of information found in Tayvlor's book Force-on-Force
Aurition Modelling [Ref. 2: p. 7), and Hughes' book Military Modeling [Ref. 1: p. 10),
which shows the various tvpes of models in use and their characteristics of operational

realism, degree of abstraction, convenience and accessibility.

. wllh. — .. A —
MILITARY MILITARY MAP WAR COMPUTER ANALYTICAL
FIELD FIELD EXERCISES GAMES SIMULATIONS MODELS

EXERCISES EXPERIMENTS

HUMAN DECISION IMPACT AND OPERATIONAL REALISM |

- DEGREE OF ABSTRACTION
| - OUTCOME REPRODUCIBILITY
CONVENIENCE AND FLEXIBILITY

Figure 1.1 "Current Model Types.
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The three most convenient and accessible types of models shown in Figure 1.1

are war games, computer simulations and analytical models. These three types of
models are also the most commonly used to model combat attrition. A brief
description of each of them will be given to better understand and help distinguish
between them.
1. War Games
War games are conducted using real-world combat scenarios and people
playing various positions on a headquarters battle staff. A war game is conducted to
allow a commander and his staff to exercise the staff decision making processes in
‘realistic’ combat scenarios. This allows the commander to exercise and develop his
staff without incurring the true cost of combat, the loss of human life. War games can
be run utilizing the sand table method or on computers. The key to war gaming is that
there is always a person making the decisions that are required in the game.
2. Computer Simulations
Computer simulations are also used to model the combat attrition process.
The primary difference between computer simulations and war games is the method
used to represent the decision process. War games use people playing staff roles to
make the decisions where simulations use algorithms to represent the decision process.
A combat simulation not only represents the combat process, it acts it out from start
to finish. A computer simulation begins with a set of input parameters and runs
continuously until completion of the battle and then provides the results of the battle
as output. Computer simulations which utilize pseudo-random number generators to
determine the results of random events, such as the outcome of one soldier firing at
another, are called Monte Carlo Simulations and are stochastic models.
3. Analytical Models
Analytical models are the third type of model used in modeling combat
attrition. Analytical models are symbolic models which use mathematical symbols and
equations to represent the combat attrition process. Analytical models can be
developed as stochastic models or deterministic models. Stochastic models, as
introduced in the previous section, utilize probablity distributions to determine certain
variables. Therefore the output from two consecutive runs of a stochastic model will
more than likely be different. The deterministic model however, will produce the same
set of output values for a given set of input parameters.




s My research is focusing on the comparison of a stochastic Monte Carlo
Simulation and a determunistic analytical model. The deterministic model | am using
fcr comparnison is a Generalized Lanchester Equation model which was developed from

" the original Lanchester Equation Theorv. To provide a basis for the readers

understanding of this experiment, | will give a brief introduction to the historv of the

4 Lanchester Equation type models.

. C. LANCHESTER EQUATION THEORY

' 1. History Of Lanchester Equation Type Modeling

X F. W. Lanchester was a British aeronautical engineer, who in 1914 developed
two sets of simple differential equations to model the combat attrition process between
two opposing homogeneous forces (i.e., fighter aircraft vs.. fighter aircraft). ks

intentions were to provide insight into the dvnamics of combat under ‘modern

-

a conditions’ of warfare and to justify the principle of concentration of forces. The term
‘: modern conditions of warfare will be addressed again later.
Lanchester’'s original work was designed to model a force-on-force attrition
i process involving two homogeneous forces. He developed two combat attrition
N models, each having it's own unique assumptions, for this purpose. These original
X models were designed to model an ‘aimed fire’ combat scenario and an ‘area fire’
combat scenario. These two models are often referred to as the classical Lanchester
Equation Theory.
e 2. Modeling Aimed Fire
o ' The phrase aimed fire, as Lanchester used it in his original work, refers (o
combat between two forces, X and Y. where each combatant from X force acquires a
’ Y force target (i.e., locates and takes aim) and fires. An example of this tvpe combat 1s
y an infantry battle for control of an area such as hill 224. The following assumptions
’ apply for this model:
‘ I}  The combat being modeled involves two homogeneous forces (i.e.. Infantry vs.
k Infantry).
'.: 2)  The entire X force and Y force are within weapons range of one another.
:‘ 3)  The effects of weapons rounds are independent.
. 4)  Each of the forces is well enough aware of the location and condition of all
' enemy forces so that thev will engage only live enemy units. Also the rate at
\ which they kill enemy targets is constant.

5)  Fire is uniformly distnibuted over surviving enemy targets.

—
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Lanchester’'s oniginal model for aimed fire is given by Equation Set 1.1:

dx dt = -ay(t) with x(0)= x,,

(eqn 1.1)
dv dt = -bx(t) with v(0)= v,
where x(t) is defined as the number of combatants of X force at time t, ¥(t) is defined
as the number of combatants of Y force at time t, and a and b are constants which are
called attntion-rate coefficients. The attrition-rate coefficient ‘a’ represents the
effectiveness of a Y combatant killing a X combatant per unit of time. Simularly the

attrition-rate coefficient ‘b’ represents the effectiveness of a X combatant killing a Y
combatant per unit of time. This set of equations assumes that the rate at which a
force X can cause casualties to a Y force is proportional to the number of combatants
in the X force. Sinmularly, the rate at which a combatant {rom Y force can cause
casualties to the X force is assumed to be proportional to the number of combatants in
the Y force. When Equation Set 1.1 1s integrated, the resulting state equation is
obtained and has been labeled the Lanchester Square Law:

2 2 maie 2innd
b(x,7-x(1)°) = a(y 4 “-¥(1)"). {eqn 1.2)

3. Modeling Area Fire
The phrase area fire as Lanchester used it in his oniginal work, refers to a
combat scenario involving two homogeneous forces, say X and Y, which are uncertain
of exact enemy locations and engage one another by firing in the general area where
the enemy force is located. This scenario has the following assumption set:

1)  The combat being modeled involves two homogeneous forces (i.e., Infantry vs.
Infantry)

2) The entire X force and Y force are within weapons range of one another.

3)  The effects of weapons rounds are independent.

d)  Each force is aware only of the general location of the enemy force and
therefore engages the enemyv by firing into that general ‘area without the
benefit of knowing the.r effectiveness.

Sy  Fire from all surviving combatants is uniformly distributed over the area
which the enemy occupies.

6)  Each force has the same vulnerable area to enemy lire.
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Lanchesters original model for ares fire is defined by the Equation Set 1.3:

dx dt = -axy,
(eqn 1.3)
dy'dt = -byx.

This model assumes that the rate of attrition is proportional to both force levels x(t)
and y(t). This means that in the area fire model, the rate at which a X force can cause
casualties to a Y force is not only dependant upon the number of combatants in its
own force, but also on the number of combatants alive in the Y force. The rate at
which the Y force can cause casualties on the X force is similarly dependent on both
their own force level and the force level of the opposing force X.

The well known ‘Linear Law’ is obtained by integration of Equation Set 1.3
and is shown here in Equation 1.4 :

B(Xo-X(t)) = a(y -¥{(V)), (eqn 1.4)

where x, and y, are the initial force levels at time t=0, x(t) and ¥(t) are the force

0
levels at time t, and a and b are the attrition-rate coetficients for each force.
4. Attrition Rate CoefTicients

The Lanchester attntion-rate coefficients were introduced in the models above
and were defined as constants. In order to use the Lanchester models there must exist
a set of acceptable attrition-rate coefficients for each possible tvpe of engagement.
Lanchester's onginal model utilizing homogeneous forces, only requires the availability
of a limuted number of coefficients. However, in Lanchester Equation type models
which allow for the combat between heterogeneous forces, the number of attrition-rate
coefficients grows very rapidly when one considers all the possible combinations of
combatant, weapons vs. combatant weapons that can occur. As Lanchester postulated
his onginal work, he used constants for attrition-rate coefficients, which implies that
the kill capability of a force does not change over time. With constant attrition-rate
coefficients these models are easy to solve. However, there is no reason why we should
believe that such factors as range, weather, visibility, and training do not affect the kill
capability of a combatant. Tavlor provides two methods for determining numerical
values for Lanchester attrition-rate coe!licients which are used in the United States.
[Ref. 2: p. 45]
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A statistical estimate based on ‘combat’ data generated by a detailed Monte
Carlo combat simulation.
2)  An analytical submodel of the attrition process for the particular combination
of firer and targets.

In the first method, the simulation output is used to [it one or more free
parameters in the analyvtical model in an attempt to have it to provide similar results.
S. Bonder has labeled this approach a ‘fitted-parameter analytical model’ [Refs. 2,3: pp.
45,73-88).

The second method for developing the attrition-rate coefficients has been
labeled an ‘independant analytical model’ bv S. Bonder [Refs. 2,3: pp. 47.73-88]. The
concept for developing the coefTicients is to consider a single firer shooting at a single
target (which is stationary and does not fire back). These coefficients are developed
under perfect conditions with this method. There has been a large amount of work
done in the development of acceptable attrition-rate coetficients. Tavlor provides a
good list of references in his book Force-on-Force Attrition Modeling [Ref. 2}.

5. Modern Conditions of Warfare

In 1914 when F. W. Lanchester developed his original models, he was
attempting to model the combat attrition process so that he could learn more about
the dynamics of combat under ‘modern conditions. The phrase modem conditions
was an important one then as it is today. [n earlier sections Lanchesters models were
introduced and the assumptions that applied to them were given. The assumption sets
are what tailor the model to the conditions. Some of these original assumptions no
longer seem appropriate to model what we would term ‘combat under modern
conditions’. The next section discusses some of the shortcomings of the onginal
Lanchester Models, but before that it is important to lay out a sohd definition for
combat under modern conditions.

Today the conditions on the combat battlefield are very complex. First, the
air and land battles are thought of as one battle and given the title AIR-LAND
BATTLE. The ground forces commander from the battalion level on up, has a
combination of different combat units under his direct command. An Army Division
Commander has Infantry, Armor, and Artllery Battalions all assigned to his command.
The battalions which are assigned are not pure units, they too have a combination of
combat units assigned. This concept has been adopted bv the Armyv as the wav to

fight the next war. The Armyv has organized under the combined arms concept and




believe that placing a mix of supporting combat forces together on the battlefield will
be a force multiplier.

The Navy has developed much the same tvpe of conditions at sea. The
| Carrier Battle Groups (CBG) are combinations of many types of naval combat power
and therefore brings a variety of forces together to fight a battle at one point under the
Officer-in-Tactical-Command (OTC).

* 6. Shortcomings With The Original Lanchester Models
Lanchester’s original models provided a very simplified model of modern
warfare which has served as the basis for a great deal of further work in this area.
There are many shortcomings of the original models which have been identified and
have stimulated much of the work done in the vears following their development.
Lanchesters models have been popular because of their simplicity and the ease of

tracing through the mathematical computations. In this section | will discuss some of

the shortcoming which have been identified in applying Lanchesters original laws to
model today’s combat.
First, not all of today's combat scenarios can be neatly placed into the

‘square’ or ‘linear’ attrition models. The most often referenced and easily explained

s e g

example is a guerilla ambush scenario. In this case it is assumed that the guerilla force
is heavily camouflaged and the force being attacked is in the open. It is apparent that -
the attacked force would suffer a ‘squared’ attrition rate from the aimed fire of the '
guerilla force which has clear line of sight of the entire force under attack. On the !
other hand, the defending force would not have clear line of sight of the attacking 1
guenlla force and therefore would not be properly modeled by a ‘square attrition .
model, but rather the linear’ attrition model. However, even this does not properly
model the scenario. With time the defending force will be able to locate the attacking
torce well enough that their fire should be considered as ‘aimed fire’ and modeled by a
‘squared’ attrition model. This illustrates the dvnamuc conditions on the battefield
which must be considered. [Ref. 4]

One of the main assumptions of Lanchester's laws 1s that the two opposing .

forces are comprnised of homogeneous units (1.e., Infantrv vs.. Infantry). This is rarely :
the case on the battlefield todav. Todav the doctrine for a land battle 1s the Air-land A
Battle Doctrine, and 1s wntten for combined arms units. The combined arms concept ;
was introduced earlier, but warrants reemphasis.  The force that must be modeled ’

today combines several different combat units under one commander to tight a battle '
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An additional consideration is the close relationship between the ground force and the
close air support provided by the Air Force which adds another unit type into the
model. The same type of unit composition is currently found in the Navy Carrier
Battle Groups. The need for a model which allows for several different types of units
(the heterogeneous force model) is obvious. The use of heterogeneous forces requires
the model to consider allocating fire power on a variety of targets. The factors that
enter in the allocation process are; the attrition rate of each type of weapon for each
of the opposing forces weapons types, the number and type of enemy targets, and the
relative significance of each of the enemy targets.

Another assumption of the original Lanchester theory is that all of the forces
of both sides are committed to battle at the beginning and there are no reinforcements
available. Furthermore, there is no allowance for the possibility of withdrawing some
or all of a unit’s forces. These factors are definitly consider by the commander on the
battlefield today.

Separation of forces on the battlefield is ignored in the original models. They
assume that the units remain fixed in location and are always within range of the
opposing forces weapons. To better model the combat process, a movement factor
which would affect the weapons’ ranges and the accuracy of each weapon on the
battlefield would be required.

The original model is designed to model a ‘fight to the finish’ type of combat.
This definition for battle termination, of fighting to the last man, is not realistic on
today’s battlefield. There is some point in a battle where the defender will decide to
withdraw or surrender before the entire force is destroyed. [Ref. 4]

With this introduction to Lanchester Equation type models as a basis, the
next chapter will present the two models used for this research.
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II. THE MODELS

A. GENERAL

Two models were used for this research, one is a deterministic model and the
other is a stochastic computer simulation model. The deterministic model used was
developed at the Naval Postgraduate School tv Professor Paul H. Moose and
Professor John M. Wozencraft. Their model is a Generalized Lanchester Equation
type model. It will be referenced throughout the remainder of this thesis as the M'W
model or the Moose: Wozencraft model.

The stochastic computer simulation model which was utilized for this research is
a Monte Carlo Simulation written by Professor Don E. Harrison, Jr. at the Naval
Postgraduate School. It will be referenced throughout the remainder of the thesis as
the C S model or the computer simulation model.

In the following sections, each of these models will be presented to provide a
general understanding of there characteristics.

B. MOOSE/WOZENCRAFT MODEL

Paul H. Moose is a professor in the Electrical Engineering Department at the
Naval Postgraduate School and John M. Wozencraft was a professor with the
Electrical Engineering Department prior to his retirement. Both have been associated
with the academic group for the Joint Command, Control, and Communications
Curriculum, and have been interested in the decision and control problems a modern
day military commander faces. They wanted to develop a better understanding of how
command and control decisions affect battle outcome. To do this, an analytical model
of the attrition process that would provide an adequate representation of the modern
conditions of combat was needed. Such a model required modeling a variety of forces
as an aggregate force fighting on the battlefield. [Ref. 5]

As presented in chapter one, the military commander in today's environment has
several types of units available to him to fight a battle. The question of optimum
resource allocation involves the use of a variety of these units. For the model to be
useful it had to be easy to interpret and understand. Lanchester Equation type models
were easy to interpret, but were limited in their ability to model a variety of forces.
This motivated their research into the dvnamics of a Generalized System of Lanchester

Equations of the type shown here in Equation Set 2.1:
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;(i(t)= Fi(x;,y,t): wherei=1,2,........ N,
(eqn 2.1)
Vi = Gj(xy;0x: where j=12,.......,M,

where N components of a non-homogeneous X-force engage M components of a Y-
force. As shown in Equation Set 2.1, the number of combatants of type x; is a
function of their own forces, the total Y force (the sum of the Y forces) available to
fight, and time. Similarly, the rate of change of a ¥i force is a function of it's own
force level, the total X force (the sum of all x; forces) available and time.

The following set of equations represent the Moose/Wozencraft model:

(eqn 2.2)
yj(t)y=- jyj(t)'gcijxi(t)yj(‘)‘;dijxi(t) +s; where j=12,...M,

where
1)  Thex; and y; represent Blue and Orange forces of different types
2)  They; and v; are self attrition coefficients

)

3) The ay; and cjj are area fire coeflicients

4) The bij and dij are aimed fire coefficients
5) Ther;and s; are resupply coefficients

6) XpY; 2 Oforalliandj
7) ;Xi=x,§Yj=Y.

The M/W model is designed as an NxM, heterogeneous force, combat attrition
model. The significance of this fact is that it allows for closer modeling of the modern
combat force discussed in Chapter One.

In the M/W model, Equation Set 2.2, several things are different from the
original Lanchester Equation models presented in Chapter One. One major difference
is that the M/W model allows for modeling N type X forces and M type Y forces. The
Moose/ Wozencraft model treats the attrition of a given force as one process where
Lanchester’s original work broke the attrition process into two models, aimed and area
fire models. With that fact in mind then, the rate of change of a force x; is a function
of four separate factors; self-attrition, area fire attrition, aimed fire attrition and
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resupply. In the case of determining the attrition to force X » the self-attrition is
modeled using a self-attrition coefficient -u; which is multiplied by the current x; force

level. This yields the attrition to force x; which is attributed to ‘self losses” such as
disease and defections. The area fire attrition is modeled similarly to Lanchesters
original model, with the added capability to account for all the possible combinations
of ¥i forces which can cause casualties to X; by means of area fire. Thus an attrition-
rate coefficient for each possible combination of forces engaging in battle must be
available. Each Y force has an area fire coefficients -ajj associated with it. The sum of
the attrition-rate coefficients (aij) multiplied by the Yi force level can then be thought
of as an aggregate area fire attrition rate which multiplies the x; force level. The aimed
fire is very similar. It is also similar to the original Lanchester model with the added
capabilities to model NxM force battles. The aimed fire is modeled by multipling each
Y force by an attrition-rate coefficient 'bij and summing them up. This is then the
aggregate aimed fire attrition rate. Finally the last factor modeled is the resupply of

each x; force with a resupply variable r;, The sum of the self-losses, area fire losses,

L
aimed fire losses and resupply is equal to the change in the x; force.

The model determines the change in a Y force in exactly the same manner. The
attrition rate coeflicients are different of course, but the process is the same. The self-
attrition coefficient for i is Vi The area-fire attrition coefficients are given as -Cij and
the aimed fire coefficients are given as "dij' The resupply variable for Y is Sir

The relative usefulness of this model for modeling the combat attrition process
on today’s battlefield is apparent from this discussion. First, it provides the capability
to model a battle involving two heterogeneous forces which we saw is necessary to
analyze the optimum force allocation issue. Secondly, it is a deterministic model, so it
is easy to understand and interpret. It has many similarities to the original Lanchester
Equation models which are widely studied and understood.

The results of Professor Moose and Professor Wozencraft's research into the
dynamical properties of this model are provided in a paper which they are submitting
to the Military Operations Research Society for publication titled Characteristic

Trajectories of Generalized Lanchester Equations [Ref. 6].

C. STOCHASTIC COMPUTER SIMULATION MODEL
The stochastic model is a Monte Carlo Simulation designed to test the
Moose; Wozencraft model. The basis of this model was designed by Don E. Harrison,
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Jr., a professor at the Naval Postgraduate School. Professor Harrison was asked to
design a stochastic model of the attrition process which included the same factors as
the Moose/Wozencraft model. The combination of his efforts and some additional
code to run the program for a given number of replications and calculate statistical
data resulted in the model shown in Appendix B entitled Computer Simulation model
(C.S).
The C;'S model will be presented in the following sections:
1) Input parameters

2)  The Combat Cycle

3)  The Output E
The material in each section is presented in a condensed users manual form to provide

the reader with an understanding of the model and the capability to exercise the model B

if desired. X

1. Input parameters o

The computer code is written in FORTRAN77 and uses an exec file to define -

all the input files, output files, load and execute the program.

The input file contains all the required input data. Figure 2.1 shows the
contents and format of the input data file. The first line of the file is a heading which .
is read by the program and allows the user to label and keep track of which test data
set is being utilized. Next the data required for the x; forces is given. On the second -
line the number of types of X forces is given (the va-iable NTYPX in the program), .
this corresponds to the N value in the M ‘W model which specifies the number of types .
of X forces. Then the initial force level for each x; force is given, their locations, their
corresponding self-attrition coefficients (u;) and the resupply variables (r;). Next, the
attrition-rate coeflicients are provided in matrix form. The aimed fire attrition-rate
coefficients ‘d;." are given in lines three through five. Area fire attrition-rate

1

coeflicients ’cij’ are given in lines six through eight. Then the required information for '

the Y forces is listed. Once again, the number of type of Y forces is given (the -
NTYPY variable in the program) which corresponds to M in the M/W model. Then ]
each v Y initial force level, location, self attrition-rate coefficients v and resupply ¢

variables ’ sj are given. Lines ten through twelve contain the aimed ﬁre coefTicients
'bij’ and lines thirteen through fifteen contain the area fire coefficients ‘a;;’. Line Co

l
sixteen of the file contains seed numbers for the pseudo-random number generators.
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“ 1 01/16/87 TEST OF (2X2), 1 UNSTABLE ROOT §
) 2 NSTEP
75
- 3 NTYPX NTX1 NTX2 NTX3 locl loc2 loc3 uj uy ug ry ry 13
; 4 dj1dppdy3
" 3 dyp dp2 43
“ 6 d3) d33 33
P Tences
e 8 a1
9 ¢3)¢32¢33
10 NTYPY NTY1 NTY2 NTY3 locl loc2 loc3 vy vy vy 5 55 53
& 11 by b1y by3
2 12 byy by b3
N 13 b3 b3y b33
o 14 ajpappap
' 15 ay) ayap;
: 16 a3 a3; a33
b2 17 DSEED DSEED DSEED
i" Figure 2.1 Input Data File.
)
W The program is designed to be interactive before it begins the combat cycle
which allows the user to change the heading of the input file if so desired. This also
. enables the user to ensure that the input file is the one desired.
E 2. The Combat Cycle
The combat cycle is a stochastic process. During the combat cycle the
¥ combatants are chosen at random and the probability of self-loss, aimed fire loss, and
) area fire losses are all tested by use of a pseudo-random number between 0.0 and 1.0.
" The cycle begins by randomly selecting which force, X or Y, will fire. Once the force
K has been selected then a combatant from the force is selected. For the purpose of
presentation, say that xy(1) (that is combatant one of force type Xj) is selected to be
¢ the firer, then the first thing that occurs in the cycle is a check to see if combatant
o x((1) is a self loss. This is accomplished by use of a random number (between 0.0 and
z
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1.0) which is compared against the appropriate self attrition coefficient up. If the
combatant is not a self loss then a Y force combatant is selected at random as a target,
say ¥o(2) (the second combatant of force type Y2y as an example. Once the firer and
target have been identified, the next step tests the effectiveness of the ‘shot’ by using a
random number to test whether the target is killed. This process involves first
determining if the target is killed, which is done by testing whether a random number is
less than the total kill probablity (which is the sum of the aimed fire and area fire
attrition-rate coeflicients, or their kill probabilities). If the random number is less, then
the target has been Kkilled and if not the shot missed. If the target was killed then this
same process is followed to determine whether it was a loss due to aimed fire or area
fire. Required data is tabulated on the number of combatants of type Vi which are
killed by type x; forces and each force is resupplied. The combat cycle is repeated in
this manner until all combatants have had an opportunity to fire during each timestep.
This process is continued for each timestep until one of two conditions occurs:

1) One force reaches a break point which has been defined as NXSTOP and
NYSTOP. This simulates the level of attrition a commander will suffer before
pulling back or surrendering rather than fighting to the last man.

2)  The combat cycle has been repeated for a given number of timesteps, which is
specified in the input data file.

3. The Output

The C,'S model was designed to provide several output files for data analyvsis.
The model generates two files which provide a very detailed timestep-by-timestep
recording of the combat cycle outcome. These files require a great deal of storage
space and therefore during the interactive portion of the program the user is asked if
they want these files printed in their complete form. It is not recommended that they
be printed if the user desires multiple replications because the storage space required is
too large. One of these files provides a detailed listing of each timestep results
including a summary of the force levels, the number of losses by each type of fire and
the number of combatants that were resupplied. An example of this file's output is
shown in Figure 2.2. The other file contains similar listings with the number of dead
combatants of each type provided as well. An example of this file’s output is shown in
Figure 2.3.

The remainder of the files are designed to provide the force levels of each force
(i.e., x; and y) for each timestep. This provides the data which can be used to plot
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02/02/87 TEST OF (3X3),
# X TYPES NUMBER EACH LOCATIONS SELF-LOSS RE-SUPPLY
3 200 150 175 1.0 1.0 1.0 0.005 0.010 0.020 4 ¢ 11

KILL PROBABILITIES FOR FORCE X(I) SHOOTS Y(J)
PK(1,1) PK(1,2) PK(1,3) PK(2,1) PK(2,2) PK(2,3) PK(3,1) PK(3,2) PK(3,3)
0.06000 0.02000 0.02000 0.00000 0.00000 0.00000 0.03000 0.01000 0.02000
AREA FIRE COEFFICIENTS FORCE X(I) SHOOTS Y(J)

CC(1,1) CC(1,2) CC(1,3) CC(2,1) CC(2,2) CC(2,3) CC(3,1) CC(3,2) CC(3,3)
0.00000 0.00000 0.00000 0.00000 0.00030 0.00020 0.00000 0.00000 0.00010

# Y TYPES NUMBER EACH LOCATIONS SELF-LOSS RE-SUPPLY
3 150 125 225 1.0 1.0 1.0 0.003 0.020 0.030 4 5 14

KILL PROBABILITIES FOR FORCE Y(I) SHOOTS X(J)
PK{1,1) PK(1,2) PK(1,3) PK(2,1) PK(2,2) PK(2,3) PK(3,1) PK(3,2) PK(3,3)
0.05000 0.01000 0.05000 0.00000 0.00000 0.00000 0.02000 0.01000 0.03000
AREA FIRE COEFFICIENTS FORCE Y(I) SHOOTS X(J)

AA(1,1) AA(1,2) AA(1,3) AA(2,1) AA(2,2) AA(2,3) AA(3,1) AA(3,2) AA(3,3)
0.00000 0.00000 0.00000 0.00000 0.00020 0.00030 0.00000 0.00000 0.00010

DOUBLE PRECISION RANDOM VARIANT SEEDS INTEGER SEED VALUES
0.3645215790+09 0.456357610+408 0.89342761D+408 1209308051 1194034571 1196766258

# NTXS NTX NX1 NX2 NX3 RX1 RX2 RX3 NTYS NTY NY1 NY2 NY3 RY1l RY2 RY3
0 525 525 200 150 175 ¢4 & 11 500 500 150 125 228 &4 5 14
TIMESTEP 1
AIMED FIRE KILLS OF Y"S BY X FORCE

D(1,1) D0D(1,2) D(1,3) D(2,1) D(2,2) D(2,3) D(3,1) D(3,2) D(3,3)
3 0 2 0 0 0 1 1 0

AIMED FIRE KILLS OF X"S BY Y FORCE

B811,1) B(1,2) B(1,3) B(2,1) B(2,2) B(2,3) B(3,1) B(3,2) B(3,3)
2 1 1 0 0 0 2 0 2

AREA FIRE KILLS OF Y"S BY X FORCE

C(1,1) C(1,2) c¢1,3) Ct(2,1) C(2,2) C(2,3) C(3,1) C(3,2) C(3,3)
0 0 0 0 5 7 0 0 2

AREA FIRE KILLS OF X"S BY Y FORCE

Al(1,1) A(1,2) A(1,3) A(2,1) A(2,2) A(2,3) A(3,1) A(3,2) A(3,3)
0 0 0 0 2 5 0 0 3

# NTXS NTX MNX1 NX2Z NX3 DX1 DX2 DX3 NTYS NTY NYL NvV2 NY3 DYl DY2 DY3
1 5256 525 200 150 175 5 5 13 500 500 150 125 225 4 9 20

Figure 2.2 Example File 6 Output.
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TOTAL X FORCE LOSS WAS 23, RESUPPLY WAS: 4 ¢ 11
AIMED FIRE LOSSES: 4 1 3
AREA FIRE LOSSES: 0 2 8
SELF LOSSES: 1 2 2
TOTAL ¥V FORCE LOSS WAS 33, RESUPPLY WAS: & 5 14
AIMED FIRE LOSSES: 4 1 2
AREA FIRE LOSSES: 0 5 9
SELF LOSSES: 0 3 9

AVERAGE ATTRITION COEFFICIENTS FOR Y FORCE

AA(1,1) AA(1,2) AA(L1,3) AA(2,1) AA(2,2) AA(2,3) AAI3,1) AA(3,2) AAL3,3)
0.00000 0.00000 0.00000 0.00000 0.00011 0.00023 0.00000 0.00000 0.00008

AVERAGE ATTRITION COEFFICIENTS FOR Y FORCE

BB(1,1) BB(1,2) BB(1,3) BB(2,1) BB(2,2) BB(2,3) BB(3,1) BB(3,2) BB(3,3)
0.03500 0.02333 0.02000 0.00000 0.00020 0.00000 0.02333 0.00000 0.02667

AVERAGE ATTRITION COEFFICIENTS FOR X FORCE

CCt1,1) CC(1,2) CCil,3) CC(2,1) CC(2,2) CC(2,3) CC(3,1) CC(3,2) CC(3,3)
0.00000 0.00000 0.00000 0.00000 0.00027 0.00021 0.00000 0.00000 0.00005

AVERAGE ATTRITION COEFFICIENTS FOR X FORCE

pp(1,1) DD(1,2) OD(1,3) DD(2,1) DD(2,2) DD(2,3) DD(3,1) DD(3,2) DD(3,3)
0.05000 0.00000 0.02222 0.00000 0.00000 0.00000 0.01905 0.02286 0.00000

STOPPED BY PROGRAM AT NSTOP = 1

¢4 1 525 521 199 149 173 4 4 11 500 490 150 121 219 4 5 14 ‘

Figure 2.2 Example File 6 Output. (cont’d.)

force level trajectories, which allows for ease in performing a comparison of the two ’

model’s results for a given input set.

Now that each of the models has been presented, chapter three will discuss the
design of the experiment, and provide samples of the output files used for plotting the

force level trajectories.
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02/02/87 TEST OF (3X3), ‘ i
S NTXS NTX NX1 NX2 NX3 DX1 DX2 DX3 NTYS NTY Nyl NY2 NYS OYl DY2 DV3 :
+ 0 5256 525 200 150 175 O O O SO0 SO0 150 125 225 ©0 0 O B
D,8,C,A BY ROWS IN DESCENOING ORDER
1 3 0 2 ° 0 0 1 1 0
1 2 1 1 ° 0 0 2 0 2
1 0 0 0 0 5 7 0 0 2 .
1 0 0 0 0 2 5 0 0 3 ’
TOTAL X FORCE LOSS MAS 23, RESUPPLY MAS: & & 11 -
AIMED FIRE LOSSES: & 1 3 -
AREA FIRE LOSSES: 0 2 @ :
SELF LOSSES: 1 2 2 .
TOTAL Y FORCE LOSS WAS 33, RESUPPLY MAS: & § 14 ‘
AIMED FIRE LOSSES: & 1 2
AREA FIRE LOSSES: 0 5 9
SELF LOSSES: O 3 ¢ .
¢ 1 525 521 199 149 173 § S 13 SO0 4% 150 121 219 & 9 20 R
4,8,C,0 BY RONS IN DESCENDING ORDER "
AV 0.00000 0.00000 0.00000 0.00000 0.00011 0.00023 0.00000 0.00000 0.00008 A
AV 0.03500 0.02333 0.02000 0.00000 0.00000 0.00000 0.02333 0.00000 0.02667
AV 0.00000 0.00000 0.00000 0.00000 0.00027 0.00021 0.00000 0.00000 0.0000S
AV 0.05000 0.00000 0.02222 0.00000 0.00000 0.00000 0.01908 0.02286 0.00000
STOPPED BY PROGRAM AT NSTOP = 1
.

Figure 2.3 Example File 7 OQutput.




IIl. RESEARCH METHODOLOGY

A. OBJECTIVE

The primary objective of this research 1s to determune whether a determunistic
combat attriion model 1s a good approximation for the mean result of . stochustic
model of the combat attrition process. With that objective in nund, an experiment was
designed to preform a comparison of two such models. The models used 1n this
experiment are the Moose Wozencralt model « M W model), which 1s a determunistic
model. and a Monte Carlo Simulation ¢C S model) which were introduced in chapter
two A secondarv objective 15 to see if the two models behave with sumnilar

characteristics as the results of Protessor Moose and Professor Wozencraft s research
[Rel o]

B. EXPERIMENTAL DESIGN

The experiment is designed to run the ' § model for ninety-nine tmesteps over
thirty replications, to generate torce level Jdata and calculate the resulting average
attrinon rate coetlicients. These average cocthuents are then used as the input
parameters to the M W model which then provides the calculated force levels per
timestep. This force level data 1s used for analvsis. The method for analvsis which has
been chosen is to plot the resulting foree level data over time to provide for an easer
compdarnson than sorung through the enormous amount of data generated for each test
case.

This experiment was conducted for cases involving Ixl, 1x2, 232, and 3«3 torce
level scenanos. Examples of the data collected and the resulting torce level trajecton
plots are provided 1n the next section.

I Model Verification

Before beginning the experiment using these two models, each of the models
was exercised and tested heavilv to reniy that thev ran properly and provided the
desired output as they were designed. A bniet Jescription of the venfication process tor
cach model will be given.

a. Computer Simulation Model ((|S model)

The tirst step in ventving thie €8 model involved a procedure of «everal

runs using difTerent input Jdata sets to test the program to ensure that




M ol 1,
O

Y
1)  The input data and program were compatible and the input vanables are “,

properly read. A

2)  All the computational code was performung properly (1.e., the average attrition '

rate coefficients and the average force levels). :

' 3) That each of the test conditions was [unctioning as designed (1e., the 4
condition for ending at the specified force levels XSTOP and YSTOP). s

. 4)  That the output was presented as desired for the step-byv-step analvsis and the -
plotung data. b4

5y Test the resuling average attntion-rate coetficients with the input probabilities :

ot kill which correspond te these coetlicients. .

Dunng this poruon of the research 1t was interesting to note that the (° §

model was designed to allow each shooter one shot per ume interval, but the shooter X

could select a target to fire at which had already been killed dunng that ume interval. E

This fact seemed to be a tairly realistic condition that could occur on the battle field N

where two combatants fire at the same target instantaneously or within a traction of 4 X

second of each other. Therefore, this condition was lett in the model .

b. VNoese/Wazencraft Model (M| W modeh

A computer program was designed to run the M W model to allow tor an N

easy companson ot the two models By utibzing 4 computer program it allowed lor ~

the same timestep by tumestep analysis as the (C § model. -

After designing the FORTRAN program. shown in Appendix 1), to run the ;~

) Moose Wozencraft model (M W model) 1t was tested to veniyv that the following ;'

conditions were met: '

1)  The input data and the program were compatible and all vanables were read .

properiy :
2)  All computational code was performung as designed. o

3)  The resulting output files provided the dewired data for analvas. Since the g

M W model 1s a determunistic model, the same output will be obtained each f.

ume for the same set of input Jdata parameters N

Each of the conditions listed above was ventied tor simple input Jdata sets for each of :.

the cases. :

2. Data Generation Procedure g, h

The procedure followed 1n conducting this experiment was a three step process :’

for each unique case tested. The hirst step involved running the € S model for ninety- {

nine umesteps over thirty rephications which would generate the following Jdata files: e
1 \

~
R
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1)  The calculated average atintion-rate coeflicients which are later used as input

to the M W model. An example tile 1s shown in Figure 3 1.

01/87/87 TESY OF (1X1)
AVERAGE ATTRITION COEFFICIEMTS FOR Y FORCE

AALL,1) AALL,2) AALL,S) AAI2,)) AAIZ,2) AAL2,3) AAIS,1) AAIS,2) AALS,S)
0.00012 0.00000 0.00000 0.00001 0. 00000 0.00000 0.00000 O.00000 0. 00000

AVERAGE ATTRITION COEFFICIENTS FOR Y FORCE

8901,1) B811.2) 08i1,.3) 0812,1) BB12.2) BBI2,3) BB(3,1) BB(3,2) B8(3,3)
0.04887 0.00000 0.00000 0.00142 0.00000 0.00000 0.00000 0.00000 0.00000

AVERAGE ATTRITION CORFFICIENTS FOR X FORCE

CCi1,11 CCt1,2) CC11,.3) CC1 2,10 CCI2,2) CCU12Z,3) CCi3,1) CCi3,2) CC13,3
0.00027 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 C.00000

AVERAGE ATTRITION COEFFICIENTS FOR X FORCE

00I1,1) ODt1,2) DB11,3) DDI2,1) DOI2,2) DOt2,3) DOt3,1) DOI3,2) DOIS,3)
0.08048 0.00000 0.00000 0.00000 0.00000 0 00000 0.00000 O.00000 0.00000

STOPPED BY PROGRAN AT NSTOP = "

tigure 31 bExample Average Atinuon-rate Coethicients File For €S Model

2) A file containing the average force level tor each torce, the average torce level
plus one standard deviation, and the average torce level nunus one standard
deviation 1s provided for the aggregate torce levels X Q‘S\l) and Y (S}]) per
umestep as well as for each of the individual units X, and Y An example tile
1s shown in Figure 3.2.

3) The average force level and standard deviation of each torce level per time
step. An example of these results 1s shown in Figure 3.3,

The second step involves using the average attrition-rate coefticients calculated
by the C S model as input parameters to the M W model. T'he output generated bv
the M W model for each set of input data 1s the tollowing:

1)  The force level for each of the torces x, and by as well as the total force levels
X (¥Yvpand v (Vy

shown in Figure 34

y) tor each time step  An example of this output file 1y

s
3




01 16 87 TEST OF (2X2), | UNSITABLE ROOI
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Figure 3.2 Example Average Ny Foree Level Bile For €S Model

01 2787 TLST OF (IX2y, CASE S
M ayl

7037 S 16
149.4°7

—
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l
M
3
4
5

 S9 SR TPV

Figure 3.3 Example File of Force Level and Standard Deviation lor € S Model

The third step involves plotting the force level data generated by each of the
models to perform the comparison. The plots which were utilized tor the comparison
are listed below with examples provided:

1) A plot of the total X force vs. Total Y force level trajectories for both models

is done first. This plot provides for a macro level companson of the resulting
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01 27 87 TEST OF (1x2), CASE 4

| T oy oy
| 0 20000  300.00 |
' I 19629 29 19
| > 1928y w73 |
T 189 %Y 3046
1 15682 398 %6
SIs41) Seon
98 9169 JI72 SL
6 9092 3749
9T 9013 47740
9§ 83937 17989
99 NS ol 382 3

Figure ¥4 Lxample v5v, Force Level Data Fie For M W Model

force levels over ime (1 ¢, the | orce Commanders levelty This plot 15 two
Jdimensional. plotting the X torce level vs. Y lorce level The time variable 1s
shown by marking the force level eveny tifth umestep This plot will be used
to analy/e the two aggregate torce models results. An example of the total
torce level trajectory plotas shown in Figure 3 8
2 Plots of the x, force level vs. time and the Y torce levels vs time for both the
€ S and the M W models are given  his provides a comparison of the battle
outcome tor the two models at the nucro level An example of the v lor
plotis shown in Figure Y 6
The plots introduced in this chapter are used extensively tor conducting the
companson of the two models. Chapter | our will present the resuits o! the experiment

and discuss the compansons.
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Figure 3.5 Example Total Force Level Trajectory Plot.
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Figure 3.6 Example plot of x, force level trajectories.
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IV. EXPERIMENTAL RESULTS

A. INTRODUCTION

The primary objective of this experiment was to test whether the deterministic
Moose, Wozencraft model was a good approximation (or prediction) for the mean
result of the stochastic computer simulation. The secondary objective for this
experiment was to test whether the two models’ force level trajectories behaved in the
expected manner described by Professors Moose and Wozencraft. The results of ten
cases are presented graphically showing the two models’ results with a bracket of plus
and minus one standard deviation as a measure of uncertainty. Each case will be
discussed in the context of the primary and secondary objectives in this chapter and
their results shown graphically in Appendix E.

B. THE FOUR MODES OF BEHAVIOR

Before proceeding with the presentation of the results, it is important to briefly
explain the four trajectory behavior modes which will be referenced in each of the
cases. Professors Moose and Wozencraft found that the force level trajectories
displayed one of four distinct modes of behavior. A mode of behavior was the result of
the existence, or nonexistence, of equilibrium points in the state space (positive first
quadrant). The four modes related to the existence of one stable equilibrium, one
unstable equilibrium, two equilibria (where one is stable and one is unstable), or no
equilibria. These four modes of behavior are illustrated in Figure 4.1. [Ref. 6]

The expected behavior for any force level trajectory when one stable equilibrium
point exists in the state space is shown in Figure 4.1 (a). The trajectory will be
attracted to the stable equilibrium and remain there, since dx/dt=dy/dt=0 at the
stable equilibrium.

The expected behavior for any force level trajectory when one unstable
equilibrium point exists in the state space is shown in Figure 4.1 (b). As the ,
trajectories near the equilibrium they are repelled or turned away from the equilibrium
point. The presence of an unstable equilibrium creates a division of the state space h
into two regions. The dividing line was called a separatrix. In scenarios which exhibit y
this mode of behavior the outcome depends on which side of the separatrix the initial
force levels begin.
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Figure 4.1 The Four Trajectory Modes Of Behavior.
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The expected behavior for any force level trajectory when two equilibria exist
(one stable and one unstable) is shown in Figure 4.1 (¢). Once again the unstable
equilibrium creates a separatrix dividing the state space into regions. The stable
equilibrium will attract trajectories as discussed earlier. This particular mode of
behavior has two possible outcomes for a battle, one of the forces can win or they will
fight to a draw. The outcome depends on the initial force levels for each force.

The expected behavior for any force level trajectory when no equilibrium point
exists is shown in Figure 4.1 (d). The trajectories will approach, and eventually cross
one of the axes, which results in a force being eliminated.

C. DISCUSSION

This numerical experiment was designed to test a combat scenario involving
different opposing-force composition. (N, x M) cases involving N, types of X forces
vs. My types of Y forces are tested in this experiment. An example is a 1x2 case which
involves one X type force vs. two Y type forces. The input data sets were chosen to
test the two models for the four distinct modes of behavior that Professors Moose and
Wozencraft identified [Ref. 6]. The computed results are presented in sections which
are dedicated to a specific (N x M) scenario.

Appendix E contains the input data sets used for each model, and the resulting
force level trajectory plots for each of the cases. In each case the input data for the
C.S model was developed to test one of the modes of behavior and the MW model
input data were the calculated attrition rate coeflicients calculated by the C'S model.
Several trajectory plots were done for each of the cases. There is a plot of the total
aggregate force level trajectory which compares the total X force vs. the total Y force.
This aggregate trajectory shows the battle outcome. An example of this plot is shown
for case six in Figure 4.2.

The result of the computer simulation model, which is the mean of thirty
replications, is always shown as a solid line with squares marking the force level every
fifth time step. The Moose/Wozencraft model results are shown as a dashed line with
circles marking the force level every fifth time step. Additionally, two solid lines are
shown with no markings. These are the curves which show plus and minus one
standard deviation from the C'S model results. They serve as a measure of uncertainty
for the comparison. The aggregate force level plot provides a comparison of the two

models total force level results to determine whether they do have the same general
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Figure 4.2 Total Force Level Trajectory For Case Eight.
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i,
behavior and whether the deterministic model is a good approximation for the result of N
the stochastic model. Each of the aggregate forces (i.e., X = %xi) are plotted as a X
function of time to provide a clearer comparison of the two models results as the battle ¢
progresses. An example of these plots are shown in Figures 4.3 and 4.4. This provides .
another comparison between the two models’ results for each aggregate force. In A
addition to the aggregate force level plots, the results for each of the separate units are X
plotted as a function of time. Examples of these plots are provided in Figures 4.5 ‘
through 4.8. This provides a comparison of the two models at the individual unit level. E
The method of comparison used for this analysis was a graphical presentation of o
the force level trajectories rather than an extensive numerical analysis of the resulting :
data. Each case will be presented in a similar manner. The cases will be briefly [
described and then a list of observations given. Specific comments are made about -:
whether the M/'W trajectory was close to the C'S trajectory and whether the expected ::-:
behavior was observed. 2
D. (1X 1) CASE COMPARISONS by
The experiment was conducted for cases one through four using one X force and :_
one Y force, which are labeled as 1x1 cases. The results of each of these cases are E
shown in Figures E.1 through E.12 in Appendix E. The force level trajectories for the by
M. W model were very close to the mean force level trajectories for the C’S model in ali R
four cases.
1. Case One S
Case one was designed to test the two models involving a 1x1 scenario for the :=
mode of behavior where no equilibrium exists. The following observations are noted X
from the results shown in Figures E.1 through E.3: f
a)  The resulting force level trajectories for the M/W model and the C;S model ‘-
were very similar, both displaying the same trajectory shape. 2
b) The M/W model trajectory was well within the one standard deviation w‘
boundaries, for the complete battle. In fact, the two curves over lapped 5
during portions of the battle. This case resulted in the X force winning the r
battle.
2. Case Two o
’ Case two was designed to test the mode when one stable equilibrium exists in
the vicinity of (200,200). The following observations are noted from the results shown A

in Figures E.4 through E.6:
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X FORCE LEVEL TRAJECTORY
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Figure 4.3 X Force Level Trajectory Over Time For Case Eight.
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Figure 4.5 X1 Force Level Trajectory Over Time For Case Eight.
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a) The M W trajectory and the C S trajectory were very simular and they display
the same trajectory shape.

b) The M/W model trajectory was outside the established boundaries for the
initial portion of the battle. It is noted, however, that the area bounded byv
one standard deviation is extremely small in this region. The M W trajectory
entered the bounded area as the two curves turned. Both models reached an
equilibrium point in the vicinity of (200,200) where the battle would end in a X
draw.

c¢)  Examunation of the individual unit force level trajectories in Figures E.§ and
E.6 shows that the M W trajectory was within the established bounds tor each
force as a function of time.

3. Case Three
Case three was designed to test the Ixl scenario for the mode of behavior

where one unstable equilibrium exists in the vicinmity of (200,200). The following :

observations are noted from the results shown in Figures E.7 through E.9:
a)  The torce level trajectories of both models displayed the expected behavior for
a case where one unstable equilibrium exists. Each of the models trajectories )
approached the equilibrium and then turn away from it.
b)  Once again the M W trajectory was well within one standard deviation of the
C S trajectory.
4. Case Four
Case four was designed to test a 1xl scenario where the mode of behavior
involves two equilibria in the vicinity of (200,200L) and (366,100XS). The following
observations are noted from the results of this case shown in Figures E.10 through ;
E.12:
a)  The results show the trajectories of both models display the expected behavior R
approaching the unstable equilibrium and then turning away.
b) The M;W model was always well within the one standard deviation
boundaries for this case. v

E. (1X2) CASE COMPARISONS

One case was developed to test an unbalanced force level scenario involving one .

type X force and two type Y force. The purpose of this case was to ensure that both '
o ’

models perform properly for an unbalanced number of forces engaging in the battle. A ph
Ix2 scenario was chosen for this case and the results are presented next. f
¢

>
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1. Case Five

Case five was the one unbalanced scenario developed and the mode of
behavior tested involved one unstable equilibrium in the vicinity of (300,200). The
tollowing observations were noted from the results shown in Figures E.13 through
E.18:

a)  Both models displaved the expected behavior for an unstable equilibrium. The
trajectories for both models approached the equilibrium point and then were
turned away.

b)  The M W trajectory was well within the one standard deviation boundaries,
and had the same shape as the C S trajectory. It is interesting to note the
relative speed at which the two trajectories moved awav from the unstable
equilibrium point. The C S model moved away much faster than the M W
model.

c)  The plot of each force vs. time, shown in Figures E.14 through E.18, show the

two models results separating over time, and the M W trajectory leaving the

bounded area toward the end of the battle.
d)  This case involving a 1x2 scenario with an unstable equilibrium is similar to

case three which was a 1x! scenario involving one unstable equilibrium.

F. (2X2) CASE COMPARISONS

The next step in the experiment was to develop cases which involved two types of
forces on each side and compare the models results for the four modes of behavior
discussed. Cases six through nine are 2x2 case scenarios. Their results are shown in
Figures E.19 through E.46. The results for each of these cases will be discussed
individually.

1. Case Six

Case six is a 2x2 force level scenario designed to test the models when there

are no equilibria in the state space. The results for case six are shown in Figures E.19
through E.25. The following observations are noted from the resuits:

a)  The resulting trajectories shown in the Total Force Level Trajectory plot in
Figure E.19 show both models behaved similarly. In this particular case the Y
force was the winning force. The expected behavior for no equilibria was
observed in this case.

..............
............................
......................................................
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b) The M/W model results were within the defined one standard deviation
boundaries during most of the battle, leaving the boundaries only toward the
end of the engagement.

¢)  Further comparison of the two models can be done using the results plotted
for the individual forces in Figures E.20 through E.25. From these results it is
evident that the X force results are the ones where the models differed the
most. The trajectories all had the same general trends.

d)  This 2x2 case involving no equilibria is similar to case one which was a Ixl
case scenario involving no equilibria.

2. Case Seven
Case seven was designed to test the models results with two type X forces and
two type Y forces when two equilibria exist. The results of the two models are shown
in Figures E.26 through E.32. The following observations are noted for case seven:
a)  The resulting trajectories for both models behaved in the expected manner.

They approached the unstable equilibrium and then turned away and headed
off. In this particular case the X force is winning, but the results would be
different if the force levels were such that the initial point was above the
separatrix.

b) The M/W trajectory had the same shape as the C/S trajectory. The M/'W
trajectory shown in Figure E.26 was outside the established boundaries during
the initial portion of the battle, but was within the boundaries after they
turned away from the equilibrium. However, examination of the individual
units force level trajectories shown in Figures E.27 through E.32 shows the
M/W model within the boundaries for the X force and just outside the
boundaries for the Y force.

c)  This 2x2 case involving two equilibria is similar to case four which was a 1x1
scenario involving two equilibria.

3. Case Eight
Case eight was designed to test the two models results for a force scenario
involving two type X forces and two type Y forces with one stable equilibrium present
in the state space. The results for case eight are shown in Figure E.33 through E.39.
The following observations are noted for case eight:
a)  The resulting trajectories for the M, W and C'S models both exhibited the

expected behavior with one stable equilibrium present. They both were




; attracted to the stable equilibrium point and remained in its vicinity. The C. S
' model shows more variability due to its stochastic process.
b) The M/W trajectory had the same shape and remained within the established
boundaries for the entire battle.
¢)  This 2x2 case involving one stable equilibrium is similar to case two which was
a 1x1 scenario involving one stable equilibrium.
4. Case Nine
Case nine was designed to test the two models results for a 2x2 force level
scenario when one unstable equilibrium exists. The results for case nine are shown in
o Figures E.40 through E.46. The following observations are noted for case nine:

R A

a)  The resulting trajectories for each of the models behaved in the expected
manner for an unstable equilibrium.

b)  The M/W trajectory had the same general shape, approaching and turning
away from the equilibrium, but it was not within the designated boundaries
during most of the battle. Reviewing the results of the individual units shows

that the two models did not behave similarly as a function of time.

-
-

o ¢)  This 2x2 case involving one unstable equilibrium is similar to case three which
is a 1x1 scenario involving one unstable equilibrium.

ot

G. (3X3) CASE COMPARISONS

The last force level scenario developed for this experiment involves three type X
forces and three type Y forces. One case, labeled as a 3x3 case, was developed for this
experiment. There is no discussion of the two models results for each of the four

modes of behavior discussed earlier for the 3x3 scenario. Rather, one case was run to

o

A test the models results for the larger 3x3 scenario.
1. Case Ten
Case ten is the one 3x3 case developed for comparing the MW model results
with the C/S model results. The following observations are made from the results

shown in Figures E.47 through E.55:
_ a) The M/W trajectory was well within the established boundaries throughout
. the battle and the two trajectories shapes were almost identical.
- b) The M/W and C/S trajectories for each of the individual units are very similar.
I In several of the cases the two trajectories are overlapping for most of the
{

battle.
b
i
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H. SUMMARY OF RESULTS
The results of the numerical experiment, with ten cases involving 1x1, 1x2, 2x2,
and 3x3 force level scenarios, have been presented and briefly discussed in this chapter.
Some general observations from these results will serve as a summary of the .
experiment.
First, the results for the ten cases support the idea that a deterministic attrition
model is often a good approximation for the mean result of a stochastic attrition
model. From the results shown in the previous section, only one of the ten cases ]
displayed force level trajectories where the M, W model was significantly different from ‘
the C'S model. Five of the ten cases showed the M/W trajectories were within the
established one standard deviation boundary for the entire battle (cases one, three,
four, eight, and ten). Of the remaining cases where the deterministic MW model
results were outside the boundary for a portion of the battle shown in the Total Force
Level Trajectory plot, it was noted that the individual unit force level trajectories were ‘
within the established one standard deviation boundary in all but one case (case nine).
Secondly, the results from the experiment show that both models force level
trajectories displayed the expected mode of behavior for the number and tvpe of
equilibrium points which were present in all cases. This shows strong support for the
research done by Professors Moose and Wozencraft.
7 This experiments results are certainly not proof that the deterministic model is
always a good approximation for the mean result of a stochastic model. However, the
results do indicate they often may be a good approximation.

PR,
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS §
The results of this research showed that the M/W trajectory was a good g
approximation for the C/S trajectory in nine of ten cases. This is an indication that 3
deterministic attrition models may be good approximations for the mean of stochastic ;
attrition models. It has also shown that the modes of behavior for both models {
trajectories are very similar. The combination of these two results provides strong e
support that the M/W model is a good approximation for the C'S model. These :
results provide important support for the argument that a deterministic attrition model b,
can be used to model the combat attrition process which s generally agreed upon as a N
stochastic process. :‘
This simulation provided a test of the Moose Wozencraft model. The MW .
model was tested utilizing four different force composition scenarios, for each of the
four types of trajectory behavior modes. The results showed the MW models results o,
were good approximations for the individual unit level and the aggregate force levels of e,
the C'S model. This Generalized Lanchester Equation type model is simple to use and :'
understand. It allows the modeler, or military planner, to model an aggregate force of _
as many different type forces as required to model the real-world battlefield. The M'W "4
model has real potential for future use by military analysts. :
-1
B. COMMAND AND CONTROL APPLICATIONS -
A key decision in the Command and Control decision process is what force -
structure is required to engage a proposed enemy. The problem is to determine the ’_
optimum force size and composition required to engage an enemy and win. Optimizing -
one’s force is a very complex problem, involving the right mixture of force types and ’
the right number of each of the forces. An example would be when a commander may ’
need a tank heavy unit for a specific battle in order to ensure that his force will win. :"
A model such as the M/W model can serve as a very useful decision aid for the
military planners and combat commanders to assist with optimization of forces on the ™ \
battlefield. Given an accepted set of attrition-rate coefficients, the model can provide ; ;
the capability of testing for the optimum mix and force size required to fight and win a vy
battle. The use of a model of this type by maneuver units would require the .-
:.!
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commanders and their staffs to ask the intelligence community for specific information

on the enemies current force structure and resupply capability. This information could
be used with the model to assist planners and commanders to decide whether to
engage, and the optimum force compostion if the decision 15 made to do so. If not,
they may chose to with-draw and fight on better terms. Models of this type would be
beneficial to military planners responsible for developing OPLANS and CONPLAXNS
also. It would allow them to aypothesize the expected enemy force structures and test

proposed force structures to engage the enemy.

C. RECOMMENDATIONS

After completing this project it is apparent that a great deal of future research
can be done with these two models to provide a more complete analysis. The results
from this initial survey have identified areas for further testing which would provide a
more complete understanding of the dynamics of the two models. The areas listed
below would provide good topics for future work with these models:

1)  Utilize the models to locate the equilibrium points and the separatrix for cases
where an unstable equilibrium point exits in the state space. Once they have
been located, observe the two models results in the vicinity of the equilibrium
point for several different inital force levels. The separatrix is a very
interesting factor which should be observed closely.

2) A detailed analysis of case nine of this experiment is recommended. Case nine
was the one case which was run that did not behave similarly to the rest of the
cases. At this time it is not known why, and therefore deserves further
research.

3)  One of the observations made from this experiment involved a difference in
the attrition-rate of a force over time for the two models. This could be a

result of the normalization factor used for the aimed fire attrition in the M; W

model. This factor was used to ensure that an individual force was not

allowed to fall below a zero level. This factor may cause the two models to
have slightly different attrition-rates over time. This can be tested by
removing the factor and changing the models computer program to stop if one
force falls to a zero level.

Test the model(s) again:st approved combat simulations.



Further research in this area may lead to an attrition model which is accepted as
a useful model for modern combat. This could provide a useful Command and Control

decision aid for use by commanders and their staffs to optimize force structures on the
battlefield.
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APPENDIX A
EXEC FILE FOR C/S PROGRAM
&TRACE ON

; GLOBAL TXTLIB VFORTLIB NONIMSL IMSLSP CMSLIB
: GLOBAL LOADLIB VFLODLIB

K FILEDEF 4 TERM
FILEDEF 5 DISK INTAW DATA A
FILEDEF 6 DISK TAW FTO6F001 A
FILEDEF 7 DISK TAW FTO7F001 A
FILEDEF 8 DISK TXTY DATA A
FILEDEF 9 DISK X1Yl DATA A
FILEDEF %

| 0 DISK X2Y2 DATA A
3 FILEDEF 11 DISK X3Y3 DATA A
FILEDEF 12 DISK STEP DATA A
FILEDEF 13 DISK STATTF DATA A
FILEDEF 14 DISK STATFl DATA A
q FILEDEF 15 DISK STATF2 DATA A
FILEDEF 16 DISK STATF3 DATA A
LOAD TAW
START MAIN
CP MSG 0731P JOB TAW COMPLETED
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APPENDIX B
C/S COMPUTER PROGRAM

c
g PROGRAM LANCHESTER
g 6/18/86
g WRITTEN TO TEST THE MOOSE/WOZENCRAFT THEORY ’
c NTYPX,Y NUMBER OF TYPES OF COMBATANTS <INPUT> A
c NXS YS(I) INITIAL NUMBER OF EACH TYPE OF COMBATANT -
g ,Y(I) NUMBER OF EACH TYPE OF COMBATANT ALIVE J
c AAA(I,J ATTRITION: X(I) LOSSES TO AREA FIRE
c BBB(I,J ATTRITION: Y(J) SHOOTS X
c ccc(I,d ATTRITION: Y(I) LOSSES TO AREA FIRE
g DDD(I.J ATTRITION: X{I) SHOOTS Y
C Nnaaszg NUMBER COMBATANT xgxg RESUPPLIED/TIMESTEP
S NSSS(I NUMBER COMBATANT Y(I) RESUPPLIED/TIMESTEP
c X,YPOS (K) STORED POSITION OF EACH COMBATANT
C X,YSTAT (K) STORED STATUS (LIVE OR DEAD) OF EACH COMBATANT
g NOX, Y (K) STORED TYPE OF EACH COMBATANT
c PKHX,Y%I,J) PK: X SHOOTS Y TYPE (I,J) INTERACTION <INPUT>
g X,YAF(1,J) AREA FIRE LOSS COEFFICIENTS FOR X <INPUT>
c RN(K) LISTS OF RANDOM VARIANTS, CONTROLS WHO SHOOTS
C RX,Y(K) LISTS OF RANDOM VARIANTS, CONTROLS HITS
¢ Rxs,Ysixg LISTS OF RANDOM VARIANTS, CONTROLS SELF-LOSSES
E RXT YT{K LISTS OF RANDOM VARIANTS, CONTROLS TARGET CHOICE
c PKX,Y(I,J PK: X(I) KILLS Y(J) THIS TIMESTEP
c KAX,Y(I.J NR OF YsJ; HIT BY xgrg THIS TIMESTEP, AREA FIRE
C KHX,Y(I.J NR OF Y(J) HIT BY X(I) THIS TIMESTEP, AIMED FIRE
g PKSX,Y(I) PROBABILITY OF SELF-LOSS
c NDHX, Y (I X,Y(I) LOSSES TO AIMED FIRE THIS TIMESTEP
¢ NDAX,Y(I X.Y(I) LOSSES TO AREA FIRE THIS TIMESTEP :
g NDSX,¥(I X,¥(I) SELF LOSSES THIS TIMESTEP .
c NSTOP MAXIMUM NUMBER OF TIMESTEPS <INPUT> A
g X,YLOC POSSIBLE POSITIONS OF COMBATANTS <INPUT> 2
c IMPLICIT REAL*8 (D)
CHARACTER*40 IHEAD ;
CHARACTER*1 IANS,IYES -
DIMENSION xposg3zéz; xsrarg3222; 8 é g 23; :
c DIMENSION YPOS(3222),YSTAT(3222),NQY 3
DIMENSION XLOC(3),PKSX 3 NRRR$3§ 4
DIMENSION YLOC 3 pxsy NSSS(3 '
DIMENSION XAF(3,3),YAF
DIMENSION PKX 33 pxy
DIMENSION pxnx25, , PKHY ( ,3 ,KHX§3,3;,KHY§3,3;
DIMENSION PKAX(3.3).PKAY(3.3 3'3).KAY(3.3
DIMENSION NDX(3; Y(3) NXS( $,NYs(é)
DIMENSION NDHX .
DIMENSION NDAX(3 NDAY N
DIMENSION NDSX 3 NDSY 3 N
DIMENSION AAA § ,AARAV(3,3),SAAAAV(3,3)
Y
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DIMENSION BBB(3,3),BBBAV(3,3),SBBBAV(3,3
DIMENSION CCC(3,3).CCCAV(3,3),SCCCAV(3,3

c DIMENSION DDD(3,3 ,DDDAV(3,3),SDDDAV(3, 3
DIMENSION RX(4222% RY(4222% RN(9888)
DIMENSION RX 2422 ; RYS(42 é;

c DIMENSION RXT(4222),RYT(4222
DIMENSION SNTXiZlZ;,SNX1§ZIZg,SNXZ?ZIZ;,SNX3§212;
DIMENSION SNTY(212) ,SNY1(212),SNY2(212),6SNY3(212
DIMENSION SSNTX 212§ SSNXnglZ , SSNX2 212;,SSNX3§212
DIMENSION SSNTY(212 NY1({212),SSNY2(212),SSNY3(212
DIMENSION ANTX 12;,ANX12212;,ANX2§21 ,ANX32212;
DIMENSION ANTY(212) ANY1(212 212),ANY3(212
DIMENSION SDNTX(212),SDNX1 Zlé ,SDNX2(212) ,SDNX3(212
DIMENSION SDNTY(212),SDNY1(212),SDNY2(212),SDNY3(212
DIMENSION PSNTX(212),PSNX1(212),PSNX2(212),PSNX3(212
DIMENSION PSNTY(212),PSNY1(212),PSNY2(212),PSNY3(212
DIMENSION TSNTX(212).TSNX1(212),TSNK2(212),TSNX3(212
DIMENSION TSNTY(212),TSNY1(212),TSNY2(212),6TSNY3(212

c DIMENSION CSTEP(100
DATA IYES/'Y'/

g
CALL EXCMS('CLRSCRN')
READ (5,9400) IHEAD
WRITE(4,9410

9410 FORMAT(' DO YOU WANT TO CHANGE THIS HEADING? (Y/N) (A40)')
WRITE(4, 9400; IHEAD
READ (4,9405) IANS
9405 FORMAT Al

IF(I ? .IYES) READ (4,9400) IHEAD

C9400 FORHAT(A4

g ASK USER FOR THE NUMBER OF REPLICATIONS DESIRED

P Wy
..“‘.'

9490 FORMAT

HOW HANY REPLICAS DO DESIRE? (MAX 100)')

WRITE§4 ,9490)
9495) L
14

WRITE(4,9480)
9480 FORMAT

READ
9401 FORMAT

4,9401)

IANS

THEAD
IHEAD
IHEAD
IHEAD

! DO YOU WANT FILES 6 AND 7 PRINTED?

- '\'*'\
v

vy

“»

IHEAD
IHEAD
IHEAD
IHEAD
IHEAD
IHEAD
THEAD
NSTOP
NTYPX NX, XLOC, PKSX,NRRR

irfims g Lk

gsg¥% 6 9501§ NTYPX ,NX, XLOC, PKSX,NRRR
READ (5,9505) ((PKHX(I,bJ),J=1,3),I=1,3)
IF(IANS.EQ.IYES)THEN

HRITEE6 .9 21;

ggg}% 6,9520) ((PKHX(I,J),J=1,3),I=1,3)
READ (5,9505) ((XAF(I,J),J=1,3),1=1,3)
IF(IANS.EQ.IYES)THEN

14,9400
15,9400
15 9400
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WRIT526,9523;
WRI¥E 6,9520) ((XAF(1,J),J=1,3),I=1,3)

ENDIF

READ (5,9500) NTYPY, NY,bYLOC,PKSY,NSSS
(i gy s

ggg¥E26l9501; NTYPY,NY,YLOC, PKSY ,NSSS
READ (5,9505) ((PKHY(I J),J=1,3),I1=1,3)
i g e

WRI¥526 9520; ((PKHY(I,J),J=1,3),I=1,3)

END

READ (5, 9505) ((YAF(I J),J=1,3),1=1,3)
IF(IANS.EQ.IYES)THEN

wa:rsgs ,9524

WRITE(6 9520; ((YaF(1,J),J=1,3),I1=1,3)

EN
9500 FORMAT 4I5,3FS. 1 3F7.3,315
9501 FORMAT(415,3F5.1,3F7.3,315

9502 FORMAT( ' # X TYPES NUMBER EACH LOCATIONS
X ! RE-SUPPLY
9503 FORMAT( 'I# Y TYPES NUMBER)EACH LOCATIONS

X RE-SUPPLY
9505 FORMAT§3F8 .5)

SELF-LOSS ',
SELF-LOSS ',

8520 FORMAT(9F8.5,/)
9521 FORMAT{/,' KILL PROBABILITIES FOR FORCE X(I) SHOOTS Y(Jg /
X ' PKSl,l PKEl 2; PK(1,3) PK(2,1) PK(2,2) PK( 3
X v PK{3'1) PK(3/2) PK(3.3
9522 FORMAT(/,' KILL PROBABILITIES FOR FORCE Y(I) SHOOTS x(Jg {/
x ' 21,1; Px$1,z; PKSl ,3) PR(2,1) "PR(2,2) PK( i)
1 PK(3.1) PK(3.2) PK(3,3)’
9524 FORMAT(/,' AREA FIRE COEFFICIENTS FORCE Y(I) SHOOTS X(J) ',/
x AAil,lg AAEI,Z; AA§1,3 AA(2,1) 'AAa(2,2) aA(2,3)!
AA(3'1) aa(3,2) AA(3,3
9523 FORMAT(/,' AREA FIRE COEFFICIENTS FORCE X(I) SHOOTS Y(Jg ./
21 1; cczl,zg CC§1'33 cc(2,1) ‘cc(2,2) cc(z,3
c x v Ce{3'1) cc{32) ccl3.3))
g INITIALIZE THE RANDOM NUMBER GENERATORS
READ(5,9510) DX,DY,DN
DSEEDX=DX
DSEEDY=DY
DSEEDN=DN
IF (IANS. Eg .IYES)THEN
waxrsge 9811 ;
g§g§§ 6.9510) DX,DY,DN,DSEEDX,DSEEDY,DSEEDN
9510 FORMAT$3015 ,3I11)
9511 FORMAT(" DOUBLE PRECISION RANDOM VARIANT SEEDS v,
c X ' INTEGER SEED VALUES')
g INITILAIZE THE STATISTICS VARIABLES
DO 10 I=1, 212
SNTX(I)=0
SNX1(I)=0
SNX2(I)=0
SNX3(I)=
SNTY(I}=
SNY1(I)=
SNY2(I)=
SNY3(I)=
SSNTX(I)=
SSNX1(I)=
SSNX2(I)=
SSNX3(I)=
SSNTY(I)=
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TSNTX
TSNX1
TSNX2
TSNX3
TSNTY
TSNY1
TSNY2
TSNY3(I)=
10  CONTINUE

NXS(I)=

SDSTEP=0.0
SSTEP=0.0
SSSTEP=0.0
DO 17 I=1,100
CSTEP(I)=0.0
7 CONTINUE

BEGIN REPLICATIONS

DO 4000 N=1,L
NSTEP=0

NTX=0

NTY=Q

DO 20 I=1,3
NY§I =NYS(1I

anoa-

NX(I)=NXS(1
IF(I.LE. JQ THEN
NTX=NTX+NX(1)
ENDIF
IF(I.LE.NTYPY THEN
NTY=NTY+NY(I)
ENDIF
20 CONTINUE
NTXS=NTX
NTYS=NTY
NXSTOP=50
NYSTOP=50 -
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INITIALIZE THE TWO FORCES

"a IHAX:O
2 IHIN-I
1P=0

¢ DO 200 J=1,NTYPX
. IMAX=IMAX+NX(J)
i DO 100 I=IMIN,IMAX
. IP=1P+1
' XPOS(1IP)= XLOC(J)
» XSTAT(IP)=1
' . NQX(IP)=J

100 CONTINUE
¥ IMIN=IMAX+1
¢ 200 CONTINUE

IMAX=0

Wy IMIN=1

by IP=0

- DO 400 J=1,NTYPY

IMAX=IMAX+NY(J)

. DO 300 I=IMIN,IMAX

4 IP=IP+1

" POS(IP)—YLOC(J)

. YST?T(§P3

) 300 CONTINUE

\ IMIN=IMAX+1

400 CONTINUE
DO 500 I=1,3
NDX(I)=0
NDY(I)=0

500 CONTINUE
DO 700 I=1
DO 700 J=1
AAAAV(I,
BBBAV(I.
CCCAV(I,
DDDAV(I,

700 CONTINUE

SETUP A FILE FOR FUTURE PLOTTING
IF(IANS E? . IYES)THEN
WRITE&
# NTXS NTX NX1 NX2 NX3 DX1 DX2 DX3'

9700 FORMAT
X ' NTYS NTY NYl NY2 NY3 DYl DY2 DYj
WRITE§7 ,9710) NSTEP,NTXS NTX,NX,NDX,NTYS,6NTY,NY, NDY

2P AIID

Wuhins -
OOOOWW
OOOO

BhAA s
nnn
GGG
R

9710 FORMAT('+' 14,2(515,314),/)
WRITE(6,9711)
9711 ;ORHAT #  NTXS NIX NX1 NK2 NX3 RK1 RX2 RX3!,

NTYS NTY NY1 NY2 NY3 RYl RY2 RY3')
gng§§6,9710) NSTEP ,NTXS ,NTX,NX,NRRR,NTYS ,NTY,NY,NSSS

PO Sy Rl A

NTT TOTAL NUMBER OF LIVE COMBATANTS
NSX,Y NUMBER OF COMBATANT WHO IS FIRING
1X,Y TYPE OF COMBATANT FIRING

NTARX,Y COUNT OF TARGETS ATTACKED

NCX,Y NUMBER OF TARGET UNDER FIRE

JX, Y TYPE OF TARGET UNDER FIRE

THIS IS THE BEGINNING OF THE COMBAT CYCLE

: 1000 CONTINUE
s NSTEP=NSTEP+1
" NTT=NTX+NTY
\ NGT=1.S*REAL(NTT)

(21slelsislsisininln)
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NGX=1.3*REALS
NGY=1.3*REAL(NTY

MAKE THE LISTS OF RANDOM NUMBERS

CALL GGUBS(DSEEDN,NGT, RN;
CALL GGUBS(DSEEDX,NGX,RX

\ CALL GGUBS(DSEEDX,NGX, RXS;

! CALL GGUBS(DSEEDX,NGX,RXT

!

nnon

CALL GGUBS(DSEEDY,NGY,RY)
CALL GGUBS(DSEEDY,NGY, RYS;
CALL GGUBS DSEEDY,NGY,RYT

ZERO STORAGE FOR THIS TIMESTEP

NSX=0

NTARX=0

) NSY=0
NTARY=0
KSTOPX=
KSTOPY
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! 1020 CONTINUE

1040 CONTINUE

DO 1060

\ DO 1060 J
f PKAX(I,J
i PKAY(I,J
1060 CONTINUE
1080 CONTINUE

DO 1090 J=1,3

DO 1090 I=1,3

-

U ]
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>

[yl
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mmww
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[ X o]
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(ST

;:NTY
NTX

PRKX(I,J)=PKAX(I,J)+PKHX(I,J
KYi g PKAYgI ;+PKHY21,J;
1090 CONTINUE

DO AIMED AND AREA FIRE INTERACTIONS FOR THIS TIMESTEP
CHOOSE THE COMBATANT WHO SHOOTS, USING RN(I)

MAKE COMBATANT NUMBER (COUNT), NSX,Y
COMBATANT MUST BE ALIVE
DETERMINE COMBATANT TYPE, LX,Y
COMBATANT MUST NOT BE A SELF-LOSS

INCREASE THE TARGET COUNT, NTARX,Y
MAKE NUMBER OF TARGET, NCX,¥, WITH RXT, YT
DETERMINE TARGET TYPE, LX,Y

FOMPREEL PR TR TY) ¢ REY, Rpsery IS mIT
7 ’ < U ’
PKHX,YﬁLX,LY; > RX,Y, HIT BY AIMED FIRE
PKHX,Y(LX,LY) < RX,Y, HIT BY AIMED FIRE

aO0O0O0NNNNaONONNNNNNN

1100 CONTINUE
DO 1180 M=1,NGT )
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IF(RN(M).LE. (REAL(NTX)/NTT)) THEN

e v

c
¢ X SHOOTS
NSX=NSX+1
IFéNSX.GT.NTX) GO TO 1120
5 IF(XSTAT(NSX).EQ.0.0) GO TO 1180
o LX=N2X(NSX
N IF (PRSX(LX) .LT.RXS(NSX)) THEN
B NTARY=NTARY+1
j NCY=RYT (NTARY ) ANTV+1
g LY=N YéNCY)
h c IF(PRX(LX,LY) .GE.RK(NSX)) THEN
N ¢ KILL TARGET NUMBER NCY
o IF(YSTAT(NCY).GT.0.0) THEN
, YSTAT(NCY)=0.0
Y. IF(PKHX(LX,LY) .GE.RX(NSX)) THEN
o NDHY (LY)=NDHY (LY ) +1
/ o s X (LK, L) <KHX (LK, LY) 41
: NDAY (LY)=NDAY(LY)+1
RAX(LX,LY)=KAX(LX,LY)+1
v ENDIF
, ENDIF
. ENDIF
‘ GO TO 1180
N ELSE
XSTAT (NSX)=0.0
’ NDSX (LX) =NDSX (LX) +1
- GO TO 1180
" END
- EL
’ c
¢ c Y SHOOTS
N c
NSY=NSY+1
. IFéNSY.GT.NTY) GO TO 1150
~ IF(YSTAT(NSY).EQ.0.0) GO TO 1180
3 LY=NOY (NSY
N IF(PRSY(LY).LT.RYS(NSY)) THEN
> NTARXK=NTARX+1
) NCK=RXT (NTARX) *NTX+1
~ LX=NSX§ CX
c IF(PRY(LY,LX).GE.RY(NSY)) THEN
) ¢ KILL TARGET NUMBER NCX
2 1F(XSTAT(NCX).GT.0.0) THEN
- XSTAT(NCX)=0.0
: IF(PKHY(LY,LX) .GE.RY(NSY)) THEN
A NDHX (LX) =NDHX (LX) +1
4 prsp Y (LY, LX) =KRY (LY, LX) +1
5 NDAX(LX)=NDAX(LX)+1
. RAY(LY,LX)=KAY(LY,LX)+1
7 ENDIF
) ENDIF
v ENDIF
N GO TO 1180
ELSE
YSTAT(NSY)=0.0
NDSY (LY)=NDSY(LY)+1
‘ GO TO 1180
‘ ENDIF
‘ ENDIF
c ALL TYPE X COMBATANTS HAVE FINISHED FIRING
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C
1120 CONTINUE

KSTOPX=1
c GO TO 1170
E ALL TYPE Y COMBATANTS HAVE FINISHED FIRING
1 1150 CONTINUE
KSTOPY=1

C
g EVERY ONE HAS FINISHED FIRING
1170 CONTINUE

IF(KSTOPX.EQ.1 .AND. KSTOPY.EQ.1) GO TO 1200
1180 CONTINUE

C CALCULATE THE KILL RATIOS

C
1200 CONTINUE
DO 1290 J=1,NTYPX
DO 1250 I l,NTYPY
NUMD-NX(J)*NY( )
IF (NUMD.GE.1) T
E:DDD(J I) REAL(KHX(J I)*NTY)/REAL(NUMD)

DDD(J,I)=0.0
ENDIF
DDDAV(J, Ig'DDDAV(J ,1)+DDD(J,I)
NUMB=NY(I)* X(J)
IF (NUMB.GE.l) THEN
ELSEBBB(I J)—REAL(KHY(I J)*NTX) /REAL(NUMB)
BBB(I,J)=0.0
DIF

BBBAV(I,J =BBBAV(I,J)+BBB(I,J)
NUMC=NX (J *NY(I)
IF (NUMC.GE.l) THEN

Cccc(J, I) REAL(KAX(J,I))/REAL(NUMC)

. gB S B R 2

ELSE
CCC(J,1)=0.0
ENDIF
CCCAV(J, I‘=CCCAV(J,I)+CCC(J,I)
NUMA=NY (I )*NX(J )
IF (NUMA.GE.l) THEN
ELSE?AA(I J)-REAL(KAY(I J))/REAL(NUMA)
AAA(I,J)=0.0
ENDIF
AAAAV(I,J)=AAAAV(I,J)+AAA(I,J)
1250 CONTINUE
g TOTAL KILLED BY ALL MECHANISMS
NDX(J =NDHX$J;+NDAXEJ;+NDSX$J;
NDY(J)=NDHY(J)+NDAY(J)+NDSY(J
- 1290 CONTINUE
IF§IANS Eg
WR TE(B 9660) NSTEP ((KHX(1,J),J=1,3),1=1,3)

ENDIF
9660 FORHAT /(' TIMESTEP', I14,/,
X AIMED FIRE KILLS 'OF Y" Bg

s X
X ,// 1,1 1,2) D(1,3 (2,
X 023,1; 023.2; 023,33 ',/ 1X
X 918
IF(IANS.EQ.IYES)T
‘{;’{}”E“’ 9665) ((KHY(I J),J=1,3),1=1,3)

9665 FORMAT(IOX ' AIMED FIRE KILLS OF X'"S BY Y FORCE ',
//.t B(1,1) B(1,2) B(1,3) B(2,1) B(2,2) B(2,3)"

FORC
1) D(2 2) D(2,3)',
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X ' B(3, 1) B(3,2) B(3,3)',/,1X,

IF(IANS EQ.IYES)THE
g§1¥§(6 .9 62) ((KAX(I J),J=1,3),I1=1,3)

9662 FORHAT(IO// 'AREA FIRE KILLS OF Y"S BY X FORCE
(3,2

) g 23 1; 21 2; Cgl 3; ’C( 1) €(2,2) c(2,9),

/1%,
IF(IANS. Egezyss

garrs(s 9668) ((KAY(I J),J=1,3),1=1,3)
9668 FORMAT(10X,' AREA FIRE KILLS OF X"S BY Y FORCE ',
X /], Agl,lg él zg §1 3; A(2,1) A(2,2) a(2,3)',
X I 3i1 a(3,2) a(3,3)',/, 1%,
IF(IANS. E? .IYES) THEN
WRITE(6
waxrags 9710 NSTEP,NTXS,NTX,NX,NDX,NTYS,NTY,NY,NDY
ggr;g 7,9651

9651 FORMAT(' D,B,C,A BY ROWS IN DESCENDING ORDER Y)
IF(IANS. EgleES)THE

WRITE 0) NSTEP, ((KHX(I,J),kJ=1,3),I=1,3
WRITE(7,9650 NSTEP, ((KHY(I,J),J=1,3),1=1,3
NRITE 7,9650 NSTEP, ( (KAX(I,J),J=1,3),1I=1,3
g§1§g ,9650 NSTEP, ((KAY(I,J),J=1,3),1=1,3

C9650 FORMAT(I4,918)

g CALCULATE TOTAL LOSSES FOR ALL INTERACTIONS

1500 CONTINUE

NDTX=0
NDTY=0

DO 1510 J=1,3
NDTX= NDTX+NDX2 3
NDTY=NDTY+NDY
1510 CONTINUE
IF IANS.Eg . IYES ) THEN
WRITE(6,9670) NDTX,NRRR,NDHX,NDAX,NDSX,
NDTY, NSSS NDHY NDAY 'NDSY
XWRITE(7 ,9670) NDTX NRRR NDHX, NDAX, NDSX,

NDTY, NSSS NDHY NDAY NDSY
9670 FORMAT(' TOTAL X FORCE LOSS WAS' .14, RESUPPLY WaS:',63I4,/,

X ' AIMED FIRE LOSSES:', 314,
X ' AREA FIRE LOSSES:'.3I4./.
X ' SELF LOSSES:' 3147’
X ' TOTAL Y FORCE LOSS WAS‘ 14, RESUPPLY WAS:',3I4,/,
X ' AIMED FIRE LOSSES:',314./.
X ' AREA FIRE LOSSES:'.3I4.7’
X ' SELF LOSSES:'.3I4)
ENDIF
c ADD IN RESUPPLIED UNITS

1600 CONTINUE

DO 1650 KR=1,3

IF(K.LE.NTYPX .AND. NRRR(K) .NE.O) THEN
NADDX'NRRR(K)
NX(K)=NX(K)+NADDX
DO 1620 I=1,NADDX
NTX=NTX+1
XPOS(NTX)'XLOC(K)

XSTAT(NTX) =1.0
1620 CONTINUE
ENDIF

IF(K.LE.NTYPY .AND. NSSS(K).NE.Q) THEN
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NADDY”NSSS(K)
NY(K)=NY(K)+NADDY
DO 1640 I—l NADDY
NTY=NTY+
YPOS(NT%)'YLOC(K)

N
gTAT(NTY) =1.0
1640 CONTINUE

ENDIF
C1650 CONTINUE
C CLOSE OUT DESTROYED UNITS

C
' 1700 CONTINUE
! DO 1718 J=1,3
N =0
1710 CONTINUE
IX=0

DO 1740 I=1,NTX
IF(XSTAT(I) 'NE.0.0) THEN
' Ixif¥§% NOX(I)
gos(xx gpos(r)
XSTAT IX) XSTAT(I)

Nx(ﬁ)-nx(x)+1
ENDIF
1740 CONTINUE
- NTX=IX
) 1Y=0
p DO 1780 I=1,NTY
IF(YSTAT(I) ‘NE.0.0) THEN

- o -

y IY§(¥§% NOY(I)
) gOS(IY- Sros 1)

YSTAT IY) =YSTAT(I)
K—N%
)-NY(K)+1

E
§ 1780 CONTINUE
. NTY=IY

PRINT STATUS FOR EACH TIME STEP IF REQUESTED
Y IF%IANS.E .IYES ) THEN

ana

- WRITE(7,9 10; NSTEP,NTXS,NTX,NX,NDX,NTYS ,NTY ,NY ,NDY
WRITE 6,9710) NSTEP,NTXS,NTX,Nx,NRRR,NTYS,NTY NY,NSSS

‘ c

! C  ACCUMILATE STATISTICAL VARIABLES FOR EACH TINE STEP
I=NSTEP
SNTX(I)=SNTX(I)+NTX
SNX1(I)=SNX1(I)+NX(1
SNX2(I)=SNX2(I)+NX(2
SNX3(I)=SNX3(I)+NX(3
SNTY(I}=SNTY(I)+NT

V SNY1(I)=SNY1({I)+N¥(1
SNY2(I)=SNY2({I)+N¥(2
SNY3(I)=SNY3(I)+N¥(3

, SSNTX(I)=SSNTX(I)+NTX**2
SSNX1(I)=SSNX1(I)+NK(1)**2

‘ SSNX2(1)=SSNX2(I)+NX(2})**2
SSNX3(I)=SSNX3(I)+NX(3)**2
SSNTY(I)=SSNTY(I)+NTY**2
SSNYL(I)=SSNY1(I)+NY(1)**2
SSNY2(1)=SSNY2(I)+NY(2)**2
SSNY3(I)=SSNY3(I)+NY(3)**2

4,
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TERMINATE IF FORCES ARE ATTRITTED BELOW SPECIFIED LEVEL
IF(NTX.LE.NXSTOP .OR. NTY.LE.NYSTOP) GO TO 9120
TERMINATE ON NUMBER OF CYCLES

ana 0onn

. IF(NSTEP.LT.NSTOP) GO TO 1000

Q 9120 CONTINUE

; STEPS=REAL (NSTEP)

} C CALCULATE THE AVERAGE ATTRITION COEFFICIENTS PER REPLICATION
) d C

DO 9100 J=1,3

’

DO 9100 I=1,3

p W o 2

RAAAV(T,J)=AARAV(I,J)/STEPS
BBBAV(I,J)=BBBAV(I,J}/STEPS
CCCAV(I,J)=CCCAV{I,J}/STEPS

i DDDAV(I, J)=DDDAV(I,J)/STEPS

: SAARAV(I,J)=SAAAAV(I,J)+AARAV(I,J
: SBBBAV(I,J)=SBBBAV(I,J)+BBBAV(I,J
SCCCAV(I,J)=SCCCAV(I,J}+CCCAV(I,J
SDDDAV(I,J)=SDDDAV(I,J§+DDDAV(I,J

W 9100 CONTINUE

- CSTEP (N)=NSTEP

o

ann

ACCUMILATE THE STATISTICAL VARIABLES FOR THE NUMBER OF TIME STEPS

L~ SSTEP=SSTEP+CSTEP(N)
SSSTEP=SSSTEP+(CSTEP(N)**2)

C
g WRITE THE NUMBER OF REPLICATIONS AND THE NUMBER OF STEPS TO FILE
WRITEng,SSlO;N,CSTEP(N)

8510 FORMAT(I3,F4.0
C
g KEEP TRACK OF MINIMUM NUMBER OF STEPS FOR ALL REPLICATIONS
' IF(MINST.GT.CSTEP(N) ) THEN

e MINST=CSTEP(N)

o ENDiF
. c4000 CONTINUE
W g CALCULATE AVERAGE/STANDARD DEV.OF FORCE LEVELS FOR EACH TIME STEP
A
B=REAL(L)
o RD=1.0/B
s RDD=1.0/(B*(B-1))
A DO 4400 I=1,MINST
i, ANTX(I)=SNTX(I)*RD
N ANX1(I)=SNX1(I)*RD
; ANX2(I)=SNX2(I)*RD
Y ANX3(I)=SNX3(I)*RD
ANTY(I)=SNTY(I)*RD
ANY1(I)=SNY1(I)*RD
ANY2(I)=SNY2(I)*RD
ANY3(I)=SNY3(I)*RD
[ . SD =SOR BS{(B*SSNTX(I)=SNTX(I)**2 *RDD
L. SDNX1(I)=SURT(ABS((B*SSNX1(I)-SNX1(1 *%2)*RDD
3] SDNX2(1I)=SORT(ABS B*SSNX2(I)-SNX2(I)**2 *RDD
A SDNX3(I)=SQRT(ABS( (B*SSNX3 I)-SNX3(I)**2)*RDD
SDNTY(I)=SQRT(ABS((B*SSNTY(I =-SNTY(I)**2)*RDD
A SDNY1 (I)=SQRT(ABS((B*SSNY1 I)=SNY1(I)**2)*RDD
" . SDNY2(I)=SORT(ABS B*SSNY2(I)-SNY2(I)**2 *RDD
}. c SDNY3(I)=SQRT(ABS((B*SSNY3 I)=-SNY3(I)**2)*RDD
. C CALCULATE THE VALUES FOR PLUS AND MINUS ONE STANDARD DEVIATION
3 C FROM THE MEAN VALUES FOR PLOTTING
S C
~ 67
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L6000 LE G EN0'0.0 0. 000 0 0

PSNTX(I)=ANTX(I)+SDNTX(I
PSNX1(I)=ANX1(I)+SDNX1(I [
PSNX2(I)=ANX2(I)+SDNX2(I
PSNX3(I)=ANX3(I)+SDNX3(I
PSNTY(I)=ANTY(I)+SDNTY(I
PSNY1(I)=ANY1(I)+SDNY1(I
PSNY2(I)=ANY2(I)+SDNY2(I :
PSNY3(I)=ANY3(I)+SDNY3(I
TSNTX(I)=ANTX(I)~-(SDNTX(I))
TSNX1(I)=ANX1(I)-SDNX1(I
TSNX2(I)=aNX2(I)-SDNX2(I .
TSNX3(I)=ANX3(I)-SDNX3(I
TSNTY(I)=ANTY(I)-SDNTY(I
TSNY1(I)=ANY1(I)-SDNY1(I
TSNY2(I)=ANY2(I)-SDNY2(I
c TSNY3(I1)=ANY3(I)-SDNY3(I ,
g CALCULATE THE AVERAGE ATTRITION COEFFICIENTS OVER ALL REPLICATIONS '
DO 9200 J=1,3
DO 9200 K=1,3
ARAAV(K,J)=SAAAAV(K,J)*RD
BBBAV(K,J)=SBBBAV(K, J)*RD
CCCAV(K,J)=SCCCAV K J)*RD
DDDAV(K, J)=SDDDAV(K, J)*RD
8200 CONTINUE ’
g PRINT STATISTICS TO FILES 8,9,10,11 FOR PLOTTING
X¥§§%§ ?)8100) I,ANTX(I),ANTY(I),PSNTX(I),PSNTY(I),TSNTX(I),
X??ﬁgf I)8100) I,ANX1(I),ANY1(I),PSNX1(I),PSNY1(I),6TSNX1(I), )
ngﬁgg %? ,8100) I,ANX2(I).ANY2(I),PSNX2(I),PSNY2(I),TSNX2(I), 3
WRITE(11,8100) I,ANX3(I),ANY3(I),PSNX3(I),PSNY3(I),TSNX3(I),
XTSNY3(I)

c8100 FORMAT(I3,6(F8.2,1X))
g WRITE AVG'S AND STANDARD DEVIATIONS TO FILE FOR TABLES

WRITE(13,8150)I ,ANTX(I),SDNTX(I),ANTY(I),6 SDNTY(1

WRITE(14,8150)1,ANX1(I),SDNX1(I ;ANY1(I),SDNY1(I

WRITE(15,8150)I,ANX2 I ,SDNX2(I (ANY2(I),SDNY2(I

WRITE(16,8150)I, ANX3 ,SDNX3(I ,ANY3(I),SDNY3(I
8150 FORMAT(I3 4(F8 2,1X))

C4400 CONTINUE
g CALCULTE THE AVG AND STANDARD DEVIATION FOR THE # OF NSTEPS PER RUN
AVSTEP'SSTEP*RD
SDSTEP=S éABS((B*SSSTEP SSTEP**2)*RDD))
WRITE 12 85 O)MINST AVSTEP,SDSTEP
8500 FORMAT(I3,2F7.
C EXPLAIN CAUSE OF TERMINATION

9000 CONTINUE

WRITE(7,9656)

9656 F8§¥%§ ; 9252 C,DAEXA$O¥SJINJD%S%EN¥I¥G3ORDER )
WRITE 7:9655§ §éBBBAV§IIJ;IJ=1I3;II=1§33 <
9635 F8§¥%§ é ég9é ] AggAV 1,3),J=1,3),1=1,3 '
o ghatE e B E S '
’ E ’ ’ 14 - K
X 10X,* AVERAGE ATTRITION COEFFICIENTS FOR X FORCE 2 X E+03)',//, !
X ' ccsl,lg CC(l,Z; CCEI,B; cc(2,1) cc(2,2) ccl2,3)", ‘

X v CC(3.1) CC +'2) cc3l3y,),
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9697 £0RMAT(10X

X
X ! BB

X

9698 FORMAT(lOX
X X FORCE

. cc(2,2) cc(2,3),

FORCE
BB(2,2) BB(2,3)',

.MQ

"/
X

ENTS FOR X FORCE YL
D?(Ikl) bD(2,2) DD(2,3)",

IF(NTX.LT.NXSTOP) THEN
WRITE 26 9620; NSTEP ,NTX,NTXS
EN IWRITE 7.,9620) NSTEP,NTX,NTXS
DIF
IF(NTY.LT.NYSTOP) THEN
WRITE 26,96303 NSTEP,NTY,NTYS
ENDTE WRI'I‘E 7,9630) NSTEP,NTY,NTYS

IF (NSTEP . qu NSTOP) THEN
WRITE g 64 ; NSTOP
WRITE (7,9640) NSTOP

ENDIF
9620 FORMAT(' STOPPED IN STEP ',tI5,' BY FORCE X',/
' CURRENT X STRENGTH =',I5,', INITIAL X STRENGTH',1S5,//)

X
9630 FORMAT(' STOPPED IN STEP ',I5, 1 BY FORCE Y',/,
' "CURRENT Y STRENGTH =! ,15,', INITIAL Y STRENGTH',IS5,//)

9640 FORMAT(' STOPPED BY PROGRAM AT NSTOP JI5,/7)
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APPENDIX C
EXEC FILE FOR M/W PROGRAM

&TRACE ON
GLOBAL TXTLIB VFORTLIB NONIMSL IMSLSP CMSLIB
GLOBAL LOADLIB VFLODLIB ‘
FILEDEF 4 TERM
FILEDEF 5 DISK INMWM DATA A
FILEDEF 6 DISK MWM STLIST A
: FILEDEF 8 DISK TOTAL DATA A
, FILEDEF 9 DISK FOR1 DATA A
FILEDEF 10 DISK FOR2 DATA A
1 FILEDEF 11 DISK FOR3 DATA A
[ LOAD MWM
START MAIN
, CP MSG 0731P JOB MWM COMPLETED

AT et WP g

A
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APPENDIX D
M/W COMPUTER PROGRAM

PROGRAM WRITTEN TO RUN THE GENERALIZED LANCHESTER
EQUATION MODEL DESIGNED BY
PAUL H. MOOSE AND JACK M. WOZENCRAFT
1/08/87
WRITTEN TO TEST THE MOOSE/WOZENCRAFT THEORY

NTYPX NUMBER OF TYPES OF X COMBATANTS <INPUT>

NTYPY NUMBER OF TYPES OF Y COMBATANTS <INPUT>
TNXgIg NUMBER OF EACH TYPE OF X COMBATANTS

INY(J NUMBER OF EACH TYPE OF Y COMBATANTS

STNX,Y VARIBLE TO SUM TOTAL FORCE LEVEL PER TIMESTEP
TINX,Y TOTAL FORCE LEVEL PER TIMESTEP

AAA(J,1 ATTRITION: X(I) AREA FIRE LOSSES DUE TO Y(J)
BBB(J,I ATTRITION: X(I) AIMED FIRE LOSSES DUE TO Y(J
CCC(I,J ATTRITION: Y(J) ARERA FIRE LOSSES DUE TO X(I
DDD(I,J ATTRITION: Y(J) AIMED FIRE LOSSES DUE TO X(I
SARA(I ATTRITION: X(I) SUM OF THE AREA LOSSES

SBBB(I ATTRITION: X(I) SUM OF THE AIMED FIRE LOSSES
SCCC(J ATTRITION: Y(J) SUM OF THE AREA FIRE LOSSES
SDDD(J ATTRITION: Y(J) SUM OF THE AIMED FIRE LOSSES
NRRREI} NUMBER COMBATANT Xél; RESUPPLIED/TIMESTEP
NSSs(J NUMBER COMBATANT Y(J) RESUPPLIED/TIMESTEP
UUUéI; SELF-ATTRITION COEFFICIENT FOR X FORCE

Vwwv(J SELF-ATTRITION COEFFICIENT FOR Y FORCE
AHLXéI; X§Ig LOSSES TO AIMED FIRE THIS TIMESTEP
AMLY(J ¥(J) LOSSES TO AIMED FIRE THIS TIMESTEP
ARLXéI; XéIg LOSSES TO AREA FIRE THIS TIMESTEP

ARLY(J ¥(J) LOSSES TO AREA FIRE THIS TIMESTEP

SLXSI; XsI; SELF LOSSES THIS TIMESTEP

SLY(J ¥(J) SELF LOSSES THIS TIMESTEP

TNDXiI; TOTAL CHANGE IN ngg FORCE LEVEL THIS TIME STEP
TNDY(J TOTAL CHANGE IN Y(J) FORCE LEVEL THIS TIME STEP
NSTOP MAXIMUM NUMBER OF TIMESTEPS <INPUT>

XSTOP X FORCE LEVEL DEFINED AS THE BREAK PT.

YSTOP Y FORCE LEVEL DEFINED AS THE BREAK PT.

IMPLICIT REAL*8 (D)

CHARACTER*40 IHEAD
CHARACTER*1 IANS,IYES

DIMENSION TNX(3),TNY(3)
DIMENSION NRRR ,NSSS(3
DIMENSION AMLX(3),AMLY(3
DIMENSION ARLX(3),ARLY(3
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DIMENSION SLX(3; SLY(3)
DIMENSION g g TNDY(B;
DIMENSION AAA(3, 3, SAAA
DIMENSION BBB(3.3),SBBB(3
DIMENSION CCC(3.3).sccc(3
DIMENSION DDD 3'3) spop(3
. DIMENSION UUU(3). VvV (3) .
¢
DATA IYES/'Y'/
g
CALL EXCMS('CLRSCRN')
READ (5,9400) IHEAD
WRITE(4.9410
9410 FORMAT(' DO YOU WANT TO CHANGE THIS HEADING? (Y/N) (A40)')
WRITE(4, 94oo§ IHEAD
READ 4 9405) IANS
9405 FORMAT %
IF(IANS ? IYES) READ (4,9400) IHEAD
9400 FORMAT(A
9401 FORMAT Al;
WRITE(6,9400) IHEAD
WRITE(8.9400) IHEAD
WRITE(9.9400) IHEAD
WRITE(10,9400) IHEAD
WRITE(11,9400) IHEAD
READ (5,9500) NSTOP
READ (5.9500) NTYPX,TNX,UUU,NRRR
WRITE(6,9502
- WRITE(6.9501) NTYPX,INX, UUU, NRRR
READ (5,9505) ((pDD(I,J},J=1,3),1=1,3)
WRITE(6.9521
WRITE(6.9520 2§DDD§I J; ,J=1,3 g =1,3;
READ (5.9505 ccc{I.J) . J=1.3) 1=1.3
WRITE(6,9523
WRITE(6,9520) ((ccc(I,J),J=1,3),1I=1,3)
READ (5.9500 PY, TNY , VVV, NS5$
WRITE(6,9503
WRITE(6.,9501) NTYPY,INY, VVV, NSSS
READ (5.,9505) ((BBB(I,J},J=1,3),1=1,3)
WRITE(6. 9522
WRITE(6.9520 §Sass21 Jg J=1,3;,1=1,3;
READ (5.9505 1.3),3=1.3) 1=1.3
WRITE(6,9524
WRITE(6.9520 § 5 Jg J=1,3),1=1,3)
9500 FORMAT({I5,3FS.0,3F7.3, 31 §
9501 FORMAT(IS,3F7.2,3F7.3, 315
9502 FORMAT{ ' # X TYPES NUMBER EACH SELF-LOSS v,
X * "~ "RE-SUPPLY D)
9503 FORMAT( ' # Y TYPES 'NUMBER EACH SELF-LOSS v,
X ' "RE-SUPPLY )
9505 FORMAT(3F8. 5)
9520 FORMAT(9F8.5 éz
9521 FORMAT(/,' KiLL PROBABILITIES FOR FORCE X(I) SHOOTS Y(J%' {/,
. X ' DD 1, 1; DD(1, zg 0921 3),0D(2,1) 'DD(2,2) DD( kD
X * pD(3.1) DD(3.2) DD(3.3)"')
9522 FORMAT(/,' KIL PROBAB LITIES FOR FORCE Y(I) SHOOTS X(Jg',{/,
X ' BB 1,1; aagl,zg § 3; BB(2,1) BB(2,2) BB(2,3)",
X ' sa 3'1) BB{3.2) BB(3.3)')
9524 FORMAT(/,' FIRE COEFFICIENTS FORCE Y(1) SHOOTS X(Jg e
X ,1; AAEI,Z; AA§1,3; AA(2,1) AA(2,2) AA(2,3)")
X 3°1) aa(32) aa(3 3}
9523 FORHAT(/,' AREA ”IRE COEFFICIENTS FORCE X(I) SHOOTS Y(Jg I
X ' 2 1; 21,2; cc§1,3; CC(2,1) cc(2,2) cc(z,3)',
. X v ¢cc{3,1) cc(3.2) cc(3!
g INITIALIZE THE INTIAL FORCES LEVELS
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INTX=0

X INTY=0
\ DO 1100 I=1,3
v INTX=INTX+TNX§I;
'y INTY=INTY+INY!(I
1100 CONTINUE
TTNX=INTX
o TINY=INTY
: XSTOP=50.0
Y YSTOP=50.0
; MINST=99
A
) g SETUP A FILE FOR TRACING EACH STEPS RESULTS
wnxrsge ,9711)
9711 FORMAT(' # INTX TINX TNX1 TNX2 TNX3 RX1 RX2 RX3'.
g X ' INTY TINY TNYl TNY2 TNY3 RYl RY2 RY3')
; 6,9712% NSTEP INTX, TTNX, TNX,NRRR, INTY, TTNY , TNY | NSSS
- 9712 FORMAT 14,2(13,4F7.2.313) /)
b WRITE(6,9700)
1 9700 FORHAT *""# INTX TTNX TNX1 TNX2 TNX3'
' INTY TINY TNYl TNY2 TNY3')
wazr 2 ,971 og NSTEP INTX TINX, TNX, INTY, TTNY , TNY
9710 FORMAT{I4.2(15,4F7.
N c END IF
.. ¢
. ¢
% g THIS IS THE BEGINNING OF THE COMBAT CYCLE
" DO 4000 N=1,NSTOP
‘ . NSTEP=N
.\
) g ZERO STORAGE FOR THIS TIMESTEP
: srnx=o.o
& STNY=0.
.. DO 1015 I=1,NTYPX
SAAAéI =0.0
SBBB(1)=0.0
- 1015 CONTINUE
- DO 1020 J=1, NTYPY
N SCCC§J;=O
N SDOD(J$=0.0
N 1020 CONTINUE
l. C
g CALCULATE THE LOSSES DUE TO AREA FIRE FOR THIS TIMESTEP
DO 1110 I=1,NTYPX
DO 1105 J=1 NTYPY
- SAAA§1;=5AAASIg+SAAA§J g TNYE ;;
~ sccc{I)=sccc{Id+l{ccclI’ I§*TNX
- 1105 CONTINUE
N 1110 CONTINUE
DO 1115 I=1,NTYPX
4 ARLX(I)*(TNX(I)*SAAA(I))
2 1115 CONTINUE
" DO 1120 J=1,NTYPY
N ARLY(J)=TNY(J)*SCCC(J)
- C1120 CONTINUE
N C  CALCULATE THE LOSSES DUE TO AIMED FIRE PER TIMESTEP
¢
DO 1130 I- 1,NTYPX
X DO 1125 J=1.NTYPY
. ssseé g saaag ; §BBB§J I;*TNY§J§;
. SDDD(J)=SDDD (I} +(DDD(I  J)*INX (I
' 1125 CONTINUE
: 1130 CONTINUE
, DO 1135 I=1,NTYPX
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AMLX(1)=(TNX(I)/TTNX)*SBBB(I)
1135 CONTINUE
DO 1140 J=1 ,NTYPY
AMLY(J)=(TNY(J)/TTNY)*SDDD(J)
1140 CONTINUE

CALCULATE THE SELF LOSSES PER TIMESTEP

DO 1142 I=1,NTYPX
SLX(I)=TNX(I)*UUu(I)
1142 CONTINUE
DO 1145 J=1,NTYPY
SLY (J)=TNY(J)*VVV(J)
1145 CONTINUE

CALCULATE THE TOTAL KILLED BY ALL MECHANISMS

DO 1150 I=1, NTYPX
TNDX(I)=-SLX(I)-ARLX(I)-AMLX(I)+NRRR(I)
1150 CONTINUE
DO 1155 J=1, NTYPY
TNDY(J)=-SLY(J)-ARLY(J)-AMLY(J)+NSSS(J)
1155 CONTINUE

CALCULATE THE FORCE LEVELS AFTER THIS TIMESTEP

DO 1160 I=1,NTYPX
TNX(I)=TNX(I)+TNDX(I)
1160 CONTINUE
DO 1165 J=1,NTYPY
TNY(J)=TNY(J)+INDY(J)
1165 CONTINUE

CALCUTE THE TOTAL X,Y FORCE LEVELS

DO 1170 I=1, NTYPX
STNX=STNX+TINX(I)
1170 CONTINUE
TTNX=STNX
DO 1175 J=1 NTYPY
STNY=STNY+TNY(J)
1175 C%g;INUE

NY=STNY
PRINT STATUS FOR EACH TIME STEP

wnrrz§s,s71og NSTEP, INTX, TINX, TNX, INTY, TINY, TNY

6710 FORMAT(I4,2(I5,4F7.2)./)
PRINT VALUES TO FILES 8,9,10,11 FOR PLOTTING

WRITE a,a N, TTNX, TINY

WRITE(9 810 ,rnx(1; TNY(1)

WRITE(10, a1o ; N,TNX? ;,TNYEZ;

WRITE({11.8100 N,TNX 3) TNY(3
8100 FORMAT(I3.2(F8.2,1X))

TERMINATE IF FORCES ARE ATTRITTED BELOW SPECIFIED LEVEL
IF(TTNX.LE.XSTOP .OR.TTNY.LE.YSTOP) GO TO 5000
RETURN AND CALULATE FORCE LEVELS FOR ANOTHER TIMESTEP
4000 CONTINUE

‘ol Yad Yah bal




$000 CONTINUE
EXPLAIN CAUSE OF TERMINATION

NOON

IF(TTNX.LT.XSTOP) THEN

WRITE (6,9620) NSTEP,TTINX, INTX
ENDIF
IF(TTNY.LT.YSTOP) THEN

WRITE (6,9630) NSTEP,TTINY, INTY
ENDIF
IF (NSTEP .EQ. NSTOP) THEN
EP'DIP;_RITE (6,9640) NSTOP

9620 FORMAT(' STOPPED IN STEP ',I5,' BY FORCE X',/,
‘ CURRENT X STRENGTH =' ,F5.2,', INITIAL X STRENGTH',(IS5,//)

X
9630 FORMAT(' STOPPED IN STEP ', ,I5,' BY FORCE Y',/,
X ' CURRENT Y STRENGTH =',F5.2,', INITIAL Y STRENGTH',kI5,//)

9640 FgSgAT(‘ STOPPED BY PROGRAM AT NSTOP = ',I5,//)

SRR
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APPENDIX E
FORCE LEVEL TRAJECTORIES

Thus Appendix 1s designed to provide the reader with a complete set of all of the
results of this experiment. The input data sets tor each model are presented in tables

and then each of the force level trajectories is shown graphicaliy
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TABLE 3
INPUT DATA SET FOR C S MODEL CASE |

01 gg 87 TEST OF (1X1), NO ROOTS

1600 0 0 1.0 1.0 1.0 0.040 0.000 0.000 28 0 0
0.06000 0.00000 0.00000
0.00000 0.00000 0.000(4)
0,000 OO0 0.00000
0.00020 0.00000 O.OK)
0.00000 0.00000 0.00HX)
0.00000 0.00000 0.006KN1) o ,

1 400 0 0 1.0 1.0 1.0 0.010 0.000 0.000 16 0 0
0.01000 0.00000 0.00000
000000 000000 0.00000
0.00000 00000 0.00000
0.00020 0.00000 0.00000
0.00000 OO0 OO0
0.00000 0.00000 0.00000

345215789.D0  d45635761.D0  89342761.D0

TABLE 4
INPUT DATA SET FOR M W MODEL CASE |

0l 05 87 TEST OF (1X1), NO ROOTS

l 600 0 O 1.0 1.0 1.0 0.040 0.000 0000 28 0 0O
0.06000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00020 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000

1 400 0 0 1.0 1.0 1.0 0.010 0.000 0000 16 0 0
0.01000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 Q.00000
0.000209 0.00000 0.00000
000000000( )0 0.00000
0.00000 0.00000 0.00000
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Figure E.2 X Force Level Trajectory Over Time For Case One.
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Figure E.3 Y Force Level Trajectory Over Time For Case One.
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TABLE §
INPUT DATA SET FOR C;S MODEL CASE 2

01 ’05,/87 TEST OF (1X1), 1 STABLE ROOT AT 200,200S

l 600 0 0 10 1.0 1.0 0.040 0.000 0.000 18 0O O .
0.01000 0.00000 0.00000

0.00000_0.00000 0.00000
1 3500 0 1.0 1.0 1.0 0.060 0.000 0.000 22 0 O
0.01000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00020 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
345215789.D0  45635761.D0  89342761.DO0

TABLE 6
INPUT DATA SET FOR M'W MODEL CASE 2

0183/87 TEST OF (1X1), 1 STABLE ROOT AT 200,200S

1.600. 0. 0. 0.040 0.000 0.000 18 0 O
0.00877 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00018 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 1.00000 0.00000
1.500. 0. 0. 0.060 0.000 0.000 22 9 0
1.00874 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00017 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000




W WS WS NEF SRR |

TOTAL FORCE LEVEL TRAJECTORY
(=]
g ,
o E
o : :
o X
37 ¢
21 LEGEND ........ * ..... .
o C/S MODEL : é : : :
e}
51 """ SPLUS 18D~
S S1 !
;84. i ————eeeeeed |
- v
=3
—:O
83“ ......................................................
&
o
B D e e e e e e e e,
o : : :
—
gg.i ST SS T UUSUR SUNT OO AU
-
S.J e erage ae T T
Sl i RS el b
o~
_S‘q ................................................................ e e v e
[~
27 - B A SN
‘ - : : . - N N '..
80 100 150 200 260 300 350 400 450 500 650 600 660 700
TOTAL X FORCE LEVEL
CASE 2 (1X1) 1 STABLE ROOT

Figure E.4 Total Force Level Trajectory For Case Two.
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Figure E.5 X Force Level Trajectory Over Time For Case Two.
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TABLE 7
INPUT DATA SET FOR C;S MODEL CASE 3

01;88,’87 TEST OF (1X1), 1 UNSTABLE ROOT AT 200,2008

1 500 0 0 1.0 1.0 1.0 0.010 0.000 0.000 22 0 0

0.06000 0.00000 0.00000

0.00000 0.00000 0.00000

0.00000 0.00000 0.00000

0.00020 0.00000 0.00000

0.00000 0.00000 6.00000

0.00000 0.00000 0.00000
1600 0 0 1.0 1.0 1.0 0.010 0.000 0.000 18 0 0

0.04000 0.00000 0.00000

0.00000 0.00000 0.00000

0.00000 0.00000 0.00000

0.00020 0.00060 0.00000

0.00000 0.00000 0.00000

0.00000 0.00000 0.00000
335215789.D0 45635761.D0 89342761.D0

TABLE 8
INPUT DATA SET FOR M'W MODEL CASE 3

01,83/87 TEST OF (1X1), 1 UNSTABLE ROOT AT 200,200S
' 0. 0.0})0 0.000 0.000 22 0 O

000

1 600. 0. 0. 0.010 0.000 0.000 18 0 O
3460 0.00000 0.00000
.00000 0.00000

SCOOOOD OOOOTD

0
0
0
00017 Q
0 0.00000
.00000 0.00000 0.00000

840 .
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Figure E.7 Total Force Level Trajectory For Case Three.
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E.8 X Force Level Trajectory Over Time For Case Three.
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TABLE 9
INPUT DATA SET FOR C.S MODEL CASE 4

01 (9)()5/87 TEST OF (1X1), ROOTS AT 200,200(L’) & 366,100(S)S

1 600 0 O 1.0 1.0 1.0 0.040 0.000 0000 28 0 O
0.06000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00020 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0,00000 0,00000
1 600 0 0 1.0 1.0 1.0 0.010 0.000 0.000 12 0 O
0.01000 0.00000Q 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00020 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
3435215789.D0  45635761.D0 89342761.D0

TABLE 10
INPUT DATA SET FOR M/W MODEL CASE 4

01 03 87 TEST OF (1X1), ROOTS AT 200,200(L) & 366,100(S)S

1600. 0. 0. 0040 0.000 0.000 28 0 O
0.04972 0.00000 0.00000
0. UO()OO 0.00000 0.00000
0).00000 0.00000 0.00000
0.00017 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
1 600. 0. 0. 0.010 0.000 0.000 12 0 O
0.00796 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00017 0.00000 0 00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
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Figure E.10 Total Force Level Trajectory For Case Four.
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TABLE 11
INPUT DATA SET FOR C'S MODEL CASE §

or 3l 87 TEST OF (1X2), CASE 5

1*00 000 0 1.0 1.0 1.0 0.030 0.000 0.000 38 O O

0.16000 0.06000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00050 0.00040 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
250 300 0 1.0 1.0 1.0 0.050 0.100 0.000 44 31
0.08000 0.00000 0.00000
0.06000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00020 0.00000 0.00000
0.00030 0.00000 0.00000
0.00000 0.00000 0.00000
345215789.D0  435635761.D0  89342761.DO

0

TABLE 12
INPUT DATA SET FOR M. W MODEL CASE 5

02 83.'87 TEST OF (1X2), CASE §

1 500. 000. 0. 0.030 0.000 0,000 38 0 O
0.12243 0.04733 0.00000
G.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00038 0.00032 0.00000
0.00000 0.00000 0.00000
0.00000 0. O()()()O 0.06000

2.250. 300. 0. 0.050 0.100 0.000 44 31 0
0.06136 0. 0()()00 0.00000
0.04530 0.00000 0.00000
0.00000 9.00000 0.00000
0.00015 0.00000 0.00000
0.00023 0.00000 0.00000
0.00000 0.00000 0.0000V0
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TABLE 13
INPUT DATA SET FOR C/S MODEL CASE 6

0
0

b hd
= a
m = = m
(=] o .
g 2 2 ©
[ (=3
Qs 7 3
PR = A
_.,m S o
(=] (=) [
2 = = a
Yo = ©
n — — 5
Q\ — —-— “
o
@) 0.0.0.0.0.0. O.O.O.O.QQO
Q00
: mmmm mmm m W
=
- 0.0.0.0.0.0. 00.0.0.0.0.5
o0

TABLE 14
INPUT DATA SET FOR M;W MODEL CASE 6

=] [
[7¢]
= o vy
O p— —
2 = "
o
7 & g
A= S
2 ] o
o o
Vs S
= 5
S g
T
o] 00..00.000. SOSSSo
[
g2 m m gmmmm
T ------------
~ 000000 000000
®

< 000000 000000
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Figure E.19 Total Force Level Trajectory For Case Six.
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TABLE 15
INPUT DATA SET FOR C/S MODEL CASE 7

01/31/87 TEST OF (2X2), CASE 7, 2 ROOTS

]
)
99 e’
2200 300 0 1.0 1.0 1.0 0.010 0.020 0.000 11 16 O »,
0.01000 0.02000 0.0 A
0.01000 0.01000 0. -
0.00000 0.00000 0.00000 '
0.00008 0.00010 0.000: X
0.00010 0.00008 0.00000
0.000000.00000 0.00000 4
2 300 400 0 1.0 1.0 1.0 0.005 0.010 0.000 9 12 O N\
0.02000 0.02000 0.00000 X
0.02000 0.01000 0.00000 R
0.00000 0.60000 0.00000
0.00010 0.00005 0.00000 »
0.00005 0.00010 0.00000
0.00000 0.00000 0.00000
345215789.D0 45635761.D0  89342761.D0

>
%
TABLE 16
INPUT DATA SET FOR M/W MODEL CASE 7 .
01;31/87 TEST OF (2X2), CASE 7, 2 ROOTS ‘
2 200. 300. 0. 0.010 0.020 0.000 11 16 0 b
0.00944 0.01891 0.00000 .
0.00942 0.00925 0.00000 <
0.00000 0.00000 0.00000 '
0.00007 0.00009 0.00000
0.00009 0.00007 0.00000 %
0.00000 0.00000 0.00000 0
2 300. 400. 0. 0.005 0.010 0.000 9 12 0 :
0.01900 0.01305 0.00000 .
0.01821 0.00957 0.00000
0.00000 0.00000 0 v
0.00009 0.00005 0.00000
0.00005 0.00009 0. J
0.00000 0.00000 0.00000 :
b
3
’- s
2
3
he
¥,
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Figure E.26 Total Force Level Trajectory For Case Seven.
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Figure E.28 Y Force Level Trajectory Over Time For Case Seven.
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Figure E.29 X1 Force Level Trajectory Over Time For Case Seven.
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TABLE 17
INPUT DATA SET FOR C/S MODEL CASE 8

8

[=3
~
O
—
2

D
D!

TEST OF (2X2), CASE 8; 1 STABLE ROOT

200 0 1.0 1.0 1.0 0.100 0.120 0.000 51
90000

2

85 O

i

g

=
SO0

%OO

g
S
g

=
SR

=
i

("]
G
=
<&
(™)
3

1.0 1.0 0.100 0.150 0.000 71 76 O

$§8 (2
S23SS
833
SO0000
§OO
ég
Cooo000 000X

SOC00O OO0
Og

2SSE

oS
32
=

(Y]
&
U
N
P
n
~1
oo
O
N
(¥
(=)}
(%)

5761.D0 89342761.D0

TABLE 18
INPUT DATA SET FOR M, W MODEL CASE 8

=
Ling
S
=3

TEST OF (2X2), CASE 8; 1 STABLE ROOT
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Figure E.33 Total Force Level Trajectory For Case Eight. O

118

% e %
Vo O e P



- - - e e

R LA

X FORCE LEVEL

300 350
' 4

250
1

200

450 500 550 600 6350 700
L 1 i L L

400

X FORCE LEVEL TRAJECTORY

A . S A R S A E— v : et
0 6 10 16 20 25 30 35 40 45 50 55 60 65 70 75 80 65 90 95100

TIME

CASE 8 (2X2) 1 STABLE ROOT

Figure E.34 X Force Level Trajectory Over Time For Case Eight.

119




Y FORCE LEVEL TRAJECTORY

700

630

600

i

500 530
A 1

450

i

Y FORCE LEVEL
350 400

300

250

fre @it 4l it e e eia mwae ceirtamraisisbcecimmae b be bamiiiees o eess

_C

LEGEND
o C/S MODEL

S PLUS | 'lSD' —

o

—4 _AESEEES PR

L S . A S T . B s e o S B S B E A R
0 8 10 15 20 25 30 35 40 45 530 55 80 63 70 73 80 85 90 05100

TIME

CASE 8 (2X2) 1 STABLE ROOT

120

"l RN PERCTR PATE TR TR O
|.'l|‘|‘ \ ") \ o TSN A

Figure E.35 Y Force Level Trajectory Over Time For Case Eight.

R RN S TP
: 7o f ooy .,

= PR N ]
AL AN .-.'\J G



X1 FORCE LEVEL TRAJECTORY
Q
- 2
\]
i \)
- g-‘
' -
- ,
91 - |
2
e L
= 4
=3
=
-l
28 4
g
e N
o J
« :
2]
SE;;;;'r.".';;,,.;;;;'T ]
0 5 10 15 20 25 30 36 40 45 50 55 80 65 70 75 80 85 90 95100 ;
TIME ‘
CASE 8 (2X2) 1 STABLE ROOT 5
Figure E.36 X1 Force Level Trajectory Over Time For Case Eight. -:
.
121 4

--------------

R WA S Ny



v ab Netival va®.xf tal “a® "ad taf a8 a8 " DI TGTS U S Y R ot 1y <atecataad Vet et atatatatataatacata 102t nt et et ety gY gt Cat,

X2 FORCE LEVEL TRAJECTORY

250 300 350 400 450 500

X2 FORCE LEVEL

200

150

100

“0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 96100
TIME
CASE 8 (2X2) 1 STABLE ROOT
Figure E.37 X2 Force Level Trajectory Over Time For Case Eight. ) X

122

e b B R N T o e T e O R N S P20 e Ui S R P
WA '(\)'.ﬁ' -\}‘u‘_\\'-._'h - -}_-"\.' . .{ ‘_(,’ e



P T SR P T S TSI TIN PO TUR L) - AR LTV AT AERE AR AR FRATAN LY VY VWUY U U U U DF UN UV OW U UAFORIT SOROR OOR
PR BRSPS 1

: Y1 FORCE LEVEL TRAJECTORY

500

e -
- -

350 400 450
4

300

Y1 FORCE LEVEL
250

200
A

150
L

LEGEND .....
© ¢ i i i i B c/S MODEL S

___C/SPLUS1SD ~

100
1

................

S0

o 0 5 10 15 20 25 S0 35 40 45 50 55 60 65 70 75 80 85 90 95100
5 TIME
CASE 8 (2X2) 1 STABLE ROOT

P, Figure E.38 Y1 Force Level Trajectory Over Time For Case Eight.

b, 123

wt . e AR AT AT R A" AT A" A" -y - PRI ST L L R
- "™ ’ W SN LY R O A e S T A I LT et PP,
SN R A T N T N L N T N A N A g A T O N N O WO AT b Lo




BT R R T R R O TUU W T T T TP WU M TR IR W Ty RN RN N

Y2 FORCE LEVEL TRAJECTORY
Q
- 3
g- e th e e b ireegieecenee gaean -
§‘ .........
o
e
o |
|
=g
-
€3]
2
/ O -
_ [~L¥
N
-~
4 (-}
h gq ......
)
’ _S_~ LECEND ..... .....
o C/S MODEL o
ol v v v i T SPLUS1SD ™
O - e ot U/ MINUS 1S e
3+ttt
; ’ 0 8§ 10 15 20 25 30 35 40 45 30 35 60 65 70 75 80 83 90 95100
) TIME
CASE 8 (2X2) 1 STABLE ROOT

Figure E.39 Y2 Force Level Trajectory Over Time For Case Eight.

124




Pt Ay

‘o ot o o
R LS ASNS

. Wi. PUlFe WL W Wwws

TABLE 19
INPUT DATA SET FOR C'S MODEL CASE 9

02:

(=]
O

e

bt

/87 TEST OF (2X2), CASE 9, 1 UNSTABLE

o8

11
07000

§80-—-O
2
ot
SO
Soo000
nin
gssss
=
Coocoooo oooooo
- [

i
g
g

0 1.0 1.0 1.0 0.070 0.020 0.000 65 54 O
0000

=

00

Sgo=
S22

===
DESISSS
§~o

55
£
N r=tJ

o=t
<

ODO0OS OSSO
&

=

o

S

<o

OO0
~Io0
2SS
O ladrm
SO

400 0 1.0 1.0 1.0 0.050 0.030 0.000 55 60 O
00000

TABLE 20
INPUT DATA SET FOR M;W MODEL CASE 9

/

o
Lad
=)
o

7 TEST OF (2X2), CASE 9, 1 UNSTABLE ROOT

. 400. 0. 0.050 0.030 0.000 55 60 O
e

Y=l
£
<
(=)

o000
80\!&. Vel
MO0
ot peaea () o et
NNOCO
OO0
-—té
BNO
O OOOOOO
]
]
g

53
53
5

0. 0.070 0.020 0.000 65 54 0

OO0

(¥, 7o)
£

—C OO
Lo

SOCO0O OO0
§
[

So0000
OO0

:

125




TOTAL FORCE LEVEL TRAJECTORY

580 850 750 850 950

'

TOTAL Y FORCE LEVEL
350 450

250

150

.................

...................

600 600 700 800 900 1000 1100 1200 1300 1400 1500 18600 1700

TOTAL X FORCE LEVEL

CASE 9 (2X2) 1 UNSTABLE ROOT

-4 o - - i

P I T I e L")
WL Mo Ly o

Figure E.40 Total Force Level Trajectory For Case Nine.

126

e .t A A A N A S . At e
A A et T T A SN NN NN




» (e 5 N st s ava s O ON < AR e 4.0 g2 R0 Bt 22" B, £a" B2t 2 da 4 T
o o

a X FORCE LEVEL TRAJECTORY

i

A

A 4

4

b

X FORCE LEVEL
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

d

L

1
1)
.

T 1 L4 Ll LR

; ; ' L) ¥ T T 1 L
10 15 20 25 30 35 40 45 50 55 60 63 70 75 80 65 90 95100
TIME

y CASE 9 (2X2) 1 UNSTABLE ROOT

[
(- &

o Figure E.41 X Force Level Trajectory Over Time For Case Nine.

» 127

Lad

<




Y FORCE LEVEL
0 S0 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Y FORCE LEVEL TRAJECTORY

e

L

1

LEGEND
o_C/S MODEL
Y MODEL ___
S PLUS [ SD
: 1

......

C

3

ks

-

Fl

e

Y

4

A ry

4
L
l
H

10 35 40 45 50 35 60 65 70 73 80 85 90 96100
TIME
CASE 9 (2X2) 1 UNSTABLE ROOT

»
o
(7
[ 24
(7]
o
=

Figure E.42 Y Force Level Trajectory Over Time For Case Nine.




F X1 FORCE LEVEL TRAJECTORY |
| o i
! o
: S
! -3 |
) | > L
- 27 |
! Q :
S i 1
K i ° !
. 21 ;
, o |
t 3
3 . .
._;' : W ,
. : H/"//—’\‘"
;' o O
ES§< 0’,0
a.. ’ (€3] gﬁ : B".
: w o
5 %5‘ P
b _U.o"
=% o0-¢° |
3 -a- @’
(]
: °
N S -
. 24
» N
g LEGEND
. 27 o C/S MODEL
b o
: 3 /S PLUS {SD
i, -4
» °q- -
' Sﬁ
° ‘ Y A8 R Al Al A8 Al Al
. 0 6loIb202530354045506560057075000590”!00 '
: TIME
? CASE 9 (2X2) 1 UNSTABLE ROOT

Figure E.43 X1 Force Level Trajectory Over Time For Case Nine.

. .
< -
et

129




X2 FORCE LEVEL TRAJECTORY

A

e

D G

i S

A

e

X2 FORCE LEVFEL
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
s

LEGEND

'y

b

A

e

O & 10 15 20 26 30 36 40 45 50 55 60 65 70 75 80 86 90 98100
TIME
CASE 9 (2X2) | UNSTABLE ROOT

Figure E.44 X2 Force Level Trajectory Over Time For Case Nine.

130

.......
............................
.....................

I T B R N R S A el rrelele



Y1 FORCE LEVEL TRAJECTORY

PLUS 1 SD ~
MINOS 1SD | .. . |

't

Y

4

Y1 FORCE LEVEL
0 50 100 150 200 250 300 350 400 €50 500 550 600 650 700 750 800 A50 900 950 1000

'

Al A4 BE T Bl A A S

v T L T v v A A T L
O 8 10 15 20 25 30 35 40 45 50 53 60 65 70 75 80 85 90 95100
TIME

CASE 9 (2X2) 1 UNSTABLE ROOT

Figure E45 Y1 Force Level Trajectory Over Time For Case Nine.

)
MPEPUR N AN AL Iy



Y2 FORCE LEVEL
0 50 100 150 200 250 300 350 400 430 500 550 600 650 700 750 800 850 900 9501000

Y2 FORCE LEVEL TRAJECTORY

i

&

'\

LEGEND
o C/S MODEL
. o MW MODEL____
SPLUS 1 SD

i

4

A

- - 1

O 6 10 18 20 25 30 35 4G 43 50 55 80 85 70 75 80 88 90 96 100
TIME
CASE 9 (2X2) 1 UNSTABLE ROOT

Figure E.46 Y2 Force Level Trajectory Over Time For Case Nine.

132




e et a it rt e Res s 2a A% A’ £'a A's £'a 2'2 8% f'2 2%2 2%a 2'a R'a 2'a £'2 84 d'a £'a 4'a Atm Y 2 a'a f'a € 8’2 428’8 48 4's 1'2.8'a d'adt sk’ [
4 ar Al A

R TABLE 21
| INPUT DATA SET FOR C'S MODEL CASE 10

S 02 092,’87 TEST OF (3X3)

" 3200 150 175 1.0 1.0 1.0 0.005 0.010 0.020 4 4 11
' 06000 0.02000 0.02000
. 000 0.00000 0.00000
103000 0.01000 0.02000
0.00000 0.00000

=0

.00010
125 225 1.0 1.0 1.0 0.003 0.020 0030 4 S5 14
01000 0.05000

0000 0.00000
01000 0.03000
00000 0.00000
0.00020 (.00030
001)1)0 0.00010
789.D0  435635761.D0 89342761.D0

§o

N

EE

scocoooues
20

2%

5 ¥
SOSO0D OSCODD
< [l
(e <
L W
=
e Sar S’

L
(9]
—
U|

(NOE R R,

TABLE 22
INPUT DATA SET FOR M, W MODEL CASE 10

(=]
—
oo

7 TEST OF (3X3)
005 0.010 0.020 4 4 11

CaA
S \Orw
O ,\NON

"9
(=)}

[ o ]
000000 coocooS

:

N
—
-
=

=
o e
Vel¥/]
(=0
O
—
O
—
ON¢

2
g

=
:
§

oo
[ 3]
~J

'§§2
=

o0

o

{pd:
§§§S
~J
==L
n

L=
wS\O\O

30020003 4 5 14

P
IS
o0
(o]
o
3
SO
=
oo
Neh

g
g

[~
o0
QO
F N

=
=

« 8 4
OOOOSO COOSOD
£

x
Do

COOOSONOOOSSO

p BT L

A J
L}
[ ]
A\d

133

""" "‘.\'--.‘.-.'.\-'.\~x‘.'.‘-\\'.\\\-.)-..
» PN Y e --\-.\\\-.\\\. ..... x5 K )
,l‘,l\c“.‘ X a? o N e “'F' A

e e e T e e e .. ..



TOTAL FORCE LEVEL TRAJECTORY
i LEGEND
g ODEL " |-
NUS1SD
-7 S P
]
5 !
25
Evﬂ
o
=l o e
S
gl e
& , : ———er , .
300 360 400 450 500 650 600 660 700
TOTAL X FORCE LEVEL
CASE 10 (3X3)

Figure E.47 Total Force Level Trajectory For Case Ten.

134

. » p‘.'- -f-’.'.-’;"\-’-'o o'-'-_’- -{-‘.'vd‘v’;..“-(\‘. \"\'\, AT pe .
a Eal . - 1) o N oy ) X 8



X FORCE LEVEL

X FORCE LEVEL TRAJECTORY

[~
e
o )
2{
S
& LEGEND

a _C/S MODEL L
el i it o M WMODEL | i
8 S PLUS 1 SD peed

1SD_ | : ¢

o
84 .............................................
Q
3.1 Corn eeiiageeie e

500

450

o

[~ I I R R R i I L R L R LR T P - A
, .

° .

o) ~4 ] ) t }
" .

o .

Q- - - oee -

[ ] .

s-- , ) 1 l ] ) i
~ z

Qo

[~

N

0 6 10 15 20 26 30 35 40 45 50 55 60 65 70 75 80 85 90 96100
TIME
CASE 10 (3X3)

Figure E.48 X Force Level Trajectory Over Time For Case Ten.

135




Y FORCE LEVEL TRAJECTORY
o
S
-9
84 - i e e
& LEGEND
o_ C/S MODEL
a4 e
-]
[~
S< .............................. ——entaees: -
>
He
way H :
O
S
22| \
1
o]
al
o]
a1
S.{,.; ......... Toaoestoenns [ T DS S T TN Jorrsfonnn-
.
N
8 N . N B . . . . - . . . ‘ . |
0 6 10 15 20 25 30 35 40 45 50 55 60 63 70 75 80 8S 90 98100
' TIME
- CASE 10 (3X3)

Figure E.49 Y Force Level Trajectory Over Time For Case Ten.

136

AP TATIISA T A N AN N X



N N | \
. . . -a at . Y £.0" 7 3 ath ovh o'k *h atd ath gt
IRV A TN ST LR UM LT LA EPCTRTOIEIY TOPT R T/ LN UM Y FOY IOV BUN L WU 4,8 B S8 > -

P X1 FORCE LEVEL TRAJECTORY

¥ o
2 3
' :
’, 3_‘ . )
- : :
e : . . : B : y - .
) S P
3 . : : . ) LEGEND : N
- s .+ ... | 8_C/S MODEL L
X - T .
N 2 : Dok
_ (o]
.';_!
- 2
~
o2 > 8
&a
98|
- &
- [~ : :
y Eg.{ T S S S OO U SY SURTE NI SISt
]
<
. o
o, 8
'. o
1
. 8
) - :
(-] ' N . R : . . : . ‘ : . L . .
0 T .y 4 T L | T T Y T 4 Y
0 6 10 18 20 25 30 35 40 45 50 55 60 63 70 75 80 85 90 95100

TIME
CASE 10 (3X3)

S . M
v

Figure E.50 X1 Force Level Trajectory Over Time For Case Ten.

;""i > % =%

137

¢
R~
X
'
L ]
'

T P TS D I
ol oA




WRNEMRNNUNEINURERE

X2 FORCE LEVEL TRAJECTORY
(=4
S M . ‘
3 f
21 i
8- i | 2-G/SMODEL .
- :
o
3-1 ..............
2
41 :
- (]
(3]
&
o
8 3J ................................................................... | reedaieiderende eee Poeesdunan
N
<
[~
g- ....................... e bae i mect @ teaeie et siseame s weee oM n seae.r@ eistiscrom e & Loewiasn
2
°
2-1 i i t
R+ |
0 5 10 15 20 26 30 38 40 45 30 53 60 63 70 75 80 85 90 96100 y
TIME
CASE 10 (3X3)
Figure E.51 X2 Force Level Trajectory Over Time For Case Ten. o}
138
]

s sl



500

= 5
450

Y N S S
400

[l X S ARy
300 350
-

250
i

B R R R kLT T S S

&L
X3 FORCE LEVEL

200

- ““- -

150

AN
100

Chit e W)

10 15 20 25 30 35 40 45 60 5 60 65 70 76 80 85 90 95100
3 TIME
g CASE 10 (3X3)

ke Figure E.52 X3 Force Level Trajectory Over Time For Case Ten.

o
:' 139




Y1 FORCE LEVEL TRAJECTORY

LEGEND
o C/S MODEL
.0._.M/WMODEL ___
C/SPLUS I SD
S MINUS 1S

300
e

Y1 FORCE LEVEL
250

0 5 10 16 20 26 30 36 40 45 50 55 60 65 70 75 80 85 90 96 100
TIME
CASE 10 (3X3)

Figure E.53 Y1 Force Level Trajectory Over Time For Case Ten.

- R R
Ty W N A R R A T VY



S

AL =

-

Ll WL

o o L S

=

Y2 FORCE LEVEL

Y2 FORCE LEVEL TRAJECTORY

300

450

LEGEND

400
L

350

...............

...........................................................................................

300
L

............................................................................................................

250
—

200
L

150

100

80

0 6 10 15 20 25 30 36 40 45 50 55 60 66 70 75 80 85 90 95100
TIME
CASE 10 (3X3)

Figure E.54 Y2 Force Level Trajectory Over Time For Case Ten.

141




Y3 FORCE LEVEL TRAJECTORY
: g
. 34 fe et et b et e L hue it aer e hee Kiee bhie sNenedthseranin vo8 Sedansbemec.eteestranre iy aib et g
S ;
, .
!
o ; Lo
-
; QY o i
* [}
-
: =
°<
* 3 ”
' <3}
: 2
i 8 ﬁ_ ..................................................... TR L S e, b
™
~
o .
8-1 .....................................................................................
3.
§< .......... e L i, e P I s .
& ettty
0 6 10 16 20 25 30 33 40 46 50 65 60 63 70 75 80 808 00 88100
y TIME
' CASE 10 (3X3)
Figure E.55 Y3 Force Level Trajectory Over Time For Case Ten.
; 142
Y"‘f""f AR :: -'\I.‘ LR T ‘__-" --------------- \:.-' AT - e a e e T T T T




' LIST OF REFERENCES

"

” . 1. Hughes, W. P., Jr., and others, Military Modeling, pp. 1-51, Military Operations

5 Resgearch Society, 1984. 4 § PP P

»

:: . 2. Tavlor, James G.. Force-on-Force Aunrition Modeling, Military Applications
Section Operations Research Society of America, 1980.

{ 3. Bonder, S., “An Overview of Land Battle Modelling in the LU.S.,” in the

R Proceedings of the Thirteenth Annual U.S. Army Operations Research Symposium,

pp. 73-88, Fort lee, Virginia, 1974

4. Ekchian, L. K., An_ Overview_of Lanchester-Type Combar Models for Modern
Warfare Scenarios, March 1982.

.
& 5.  Wozencraft, J. M., and Moose, P. H., “Lanchester’s Equations and Game
y Theory,” Proceedings of the MIT, ONR Workshop on C3 Systems, July 1983.
* 6. Moose, P. H., and Wozencraft, J. M., Characteristic Trajectories of Generalized
N Lanchester Equations, ager submitted to the Military Operations Research
Y Society for publication, 1987.
X
o
N
[\
\
A
¥
)
4
N
143
b

AR

L - - RO E -..q-,‘- EACALE
“.:'l.o .A Al t"l"". NN \“ s

Wt R L e S K .r G .r_‘.-_:

e



INITIAL DISTRIBUTION LIST

No. Copies
l. Defense Technical Information Center 2
Cameron Station
Alexandrnia, Virginia 22304-6145
2. Librarv, Code 0142 2
Naval Postgraduate School
Montereyv, California 93943-5002
3. Michael Sovereign. Code 74 2
Naval Post raduate School
Montereyv, California 93943-5000
4. John M. Wozencraft, Code 74 1
\a\al Post%raduate Sch ol
Monterey, California 93943-5000

5. Paul H. Moose. Code 32Me
Naval Postgraduate School
Monterey, Califorina 93943-5000

6. Terrv A West
1930 §th Ave
Scottsblufl, Nebraska 69361

7. Dr. Don E. Hamson Jr Code 61Hx 3
Department of Phys
Monterey, Cahf‘orma 93943 5000

8. Mr. Buck Svkes
L.S. General Accounting Office
Washmgton D.C. 20548 1

tJ

()

144

T NN N N NN S TN LN NS e e " S
N a

D= rf{r‘a‘*.p.raa.a.r N O T g e o o S et R s



.'l.s‘ ) ' ‘.'i' '-'.‘.":‘" NPT P '\"\"‘{" VA '."'{ "!-".:.'\'"f'l"', IO "- e ~*-..-".;‘.\-'-’- N I SN AT AT N AN
o . b i P M O D 3 A g lla X . ol S (e N B )t N

hone



